

Rapid Construction of Functioning Physical Interfaces
from Cardboard, Thumbtacks, Tin Foil and Masking Tape

Scott E. Hudson and Jennifer Mankoff
HCI Institute

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213

{hudson, jmankoff}@cs.cmu.edu

ABSTRACT
Rapid, early, but rough system prototypes are becoming a
standard and valued part of the user interface design proc-
ess. Pen, paper, and tools like Flash™ and Director™ are
well suited to creating such prototypes. However, in the
case of physical forms with embedded technology, there is
a lack of tools for developing rapid, early prototypes. In-
stead, the process tends to be fragmented into prototypes
exploring forms that look like the intended product or ex-
plorations of functioning interactions that work like the
intended product – bringing these aspects together into full
design concepts only later in the design process. To help
alleviate this problem, we present a simple tool for very
rapidly creating functioning, rough physical prototypes
early in the design process – supporting what amounts to
interactive physical sketching. Our tool allows a designer
to combine exploration of form and interactive function,
using objects constructed from materials such as thumb-
tacks, foil, cardboard and masking tape, enhanced with a
small electronic sensor board. By means of a simple and
fluid tool for delivering events to “screen clippings,” these
physical sketches can then be easily connected to any exist-
ing (or new) program running on a PC to provide real or
Wizard of Oz supported functionality.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Tools, rapid prototyping of physical interfaces,
sketching of interactive physical forms.

INTRODUCTION
Paper prototypes, sketches, and other early design proto-
types are an important first step for many GUI designers.
One reason they are valuable is the speed with which they
can be constructed, tested, and thrown away or modified
[18]. This allows early communication and discussion
about potential designs both with users and with other
product team members. Early, rough forms can be particu-

lar valuable because of the way end-users react to them:
they are often seen as unfinished, inducing end users to
provide richer design suggestions [11].
However, as computing moves off the desktop and into
other physical forms, paper prototypes have become less
complete [15], functioning interactive prototypes tend to be
limited to fixed forms, such as existing mobile devices
[14], and rapid prototyping tools are likewise limited. As a
result, designers tend to be constrained to either create pro-
totypes that look like the final product (either physically,
e.g. using media such as foam mockups, or visually, e.g.
using tools such as Flash™) or work like the interactions
envisioned for the final product (e.g. provide equivalent
interaction via an on-screen simulation). As a result, as
illustrated in Figure 1a, the design process often involves a
splitting of form and interactivity early, with only a gradual
combining of these into a full product design. This results
in a less fluid process with potentially slower and weaker
communication and iteration.

The work described this paper seeks to alleviate this prob-
lem at the earliest stages of prototyping with BOXES
(Building Objects for eXploring Executable Sketches), a
tool that enables rapid construction of early interactive
physical prototypes that both look like and work like the
intended product. As illustrated in Figure 1b, this allows
for an integrated design process that combines form, inter-
face, and function in an earlier and more fluid fashion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland.
Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

Early Concepts

Final Product Concept

Tim
e &

 Effort

Form Interaction

BOXES

Phidgets, etc.
Toolkits

Custom
electronics & form

InteractionForm

 (a) (b)
Figure 1: BOXES helps to reduce the need for parallel but sepa-

rate development of form and interface.

289

Figure 2: A rough cut at a portable MP3 player that can play/pause (button under thumb) or stop a song. In the background, the on-screen
implementation is visible. The “play” button (Thumbtack 0) causes a mouse click over the play button on the RealOne media player. Inset
image is a close up of the physical sketch prototype with the BOXES circuit board cupped in the user’s hand.

Designers using our tool can construct prototype forms
from everyday objects like cardboard, thumbtacks, alumi-
num foil and masking tape, and can implement the func-
tionality for prototypes using any rapid prototyping lan-
guage or existing interface on a PC.
Thumbtacks and foil (optionally placed underneath tape
and labeled) are touch sensitive when connected to BOXES
and can be easily and rapidly (re)positioned on a piece of
cardboard. A simple wire connects each thumbtack (op-
tionally pressed through a foil patch of arbitrary shape and
size) to a small sensor board, which in turn communicates
with a PC through a USB connection. The designer can
then assign on-screen functionality to each touch sensitive
component. Functionality is defined in terms of translations
into mouse and keyboard actions delivered to specific por-
tions of the desktop. Thus, as illustrated in Figure 2, the
designer of a portable MP3 player can cause a simulated
mouse button click to be delivered to the “play” button of
an on-screen media player when the user presses the
thumbtack labeled “play.”
The remainder of this paper is organized as follow: First,
we describe how a designer might construct a simple appli-
cation using our tool. We then describe the hardware and
software implementation that makes BOXES possible. We
used an iterative, designer-centered process to develop
BOXES, and we end by describing the experiences of de-
signers using our tool.

BACKGROUND
The underlying requirements driving the design of the
BOXES system came from our past ethnographic work
with designers [2]. In those investigations, we learned the
following high level critical points that motivated the de-
sign of BOXES:

First, in order to facilitate design exploration; communica-
tion; and design testing; we should support a highly inter-
active system with a short design/implement/test cycle –
making changes in seconds rather than minutes or hours.
Second, the physical side of the tool needs to be close in
size to the final interactive components that will be used,
and needs to be able to integrate into existing design plat-
forms such as cardboard and foam. This suggests the need
for a tiny, portable piece of technology that can be “stuck
into things” … such as thumbtacks.
Third, the digital side of the tool needs to be sensitive to
design practice. We particularly wanted something that did
not require coding, that was interactive, that could support
rapid iteration, and that could work with existing tools such
as Director™ and Flash™.
After completing our formative work, we conducted two
pieces of exploratory research – we created the Switche-
roos system which supported a Director™-based set of
pinned components based on RFID technology [2] and we
created a programmable set of more complex interactive
components that integrated with Java (the Calder toolkit
[12]). The BOXES system has been constructed based on
lessons learned from these systems including the need for
small size, the efficacy of button-based approaches and the
need for rapid experimentation with component position-
ing.
Our approach is distinguished by its ability to be used at
the very earliest stages of design. In contrast to past work
such as the Calder hardware toolkit [12] and the physically
much larger components of the Phidgets [7] and iStuff tool-
kits [4] it allows designers to construct forms using every-
day, non-interactive objects, and add functionality to them
simply by inserting thumbtacks and/or placing foil patches.

290

Closely related to the work presented are previous systems
which have used devices configured in a tack or push pin
including [13,21,22]. These devices offer a similar fluidity
of placement. However, each includes a processor in the
externally attached portion of the device, and hence has a
notably larger form factor.
Our approach is not end-user programming: our system
does not include rules, and is not intended to encode com-
plex actions. Rather, it is intended to use the delivery of
simulated mouse and keyboard events to trigger complex
actions that are available in existing or designer-created
applications or prototypes. In comparison to past systems
[2, 4, 7, 10, 12], no coding is needed, nor is a compatible
piece of software required: any action or series of actions
that can be done with the keyboard and mouse can be at-
tached to a touch sensitive physical button in BOXES.
Our approach is most similar to the end-user accessible
“widget picker” provided with Phidgets [6], but uses an
interactive window clipping approach to action specifica-
tion inspired by the Snip [9] and WinCuts [20] systems.
The Phidgets widget picker enabled end users of applica-
tions built with standard Windows™ components to tie
activation of physical components to the activation of a
GUI component. Our approach to action is similar, but is
targeted at designers and will also work with mock-ups
done in Flash™ or Director™ (as well as Java) that do not
use standard components.
In summary, our approach is smaller, simpler, more fluid,
more application independent, and requires less coding
than similar previous tools. While it also has less function-
ality (smaller range of sensors, etc.), this tradeoff enables it
to target a much earlier stage of design than past tools.

SCENARIO
Suppose a designer is creating a portable MP3 player. She
can create an appropriate physical form using cardboard.
She begins to iteratively decide where to place buttons on
the form and what functionality they should control. For
example, the physical interface in Figure 2 has a
“play/pause” and a “stop” thumbtack/button. The thumb-
tacks are connected by wire to a circuit board taped to the
back of the cardboard. On screen, the designer must now
specify what should happen when the user touches a
thumbtack.
First, she needs to create or run the interface that will pro-
vide behaviors – in this case a free media player suffices.
She then “cuts” out the relevant portion of her desktop (es-
sentially grabbing the portion of the screen where that in-
terface is running). She selects the first thumbtack (Thumb-
tack 7, in our scenario), and indicates, using our GUI, that
when the user touches that thumbtack (and/or foil patch), it
should cause the mouse to “click” in the spot indicated by
the cross hairs (over the play/pause button of a media
player). A similar process allows her to associate “stop”
with the second thumbtack. For visual effect, she may
place masking tape over the thumbtacks or patches and

draw appropriate icons to indicate how they should be
used.
In this scenario, the entire specification process involves
selection of the screen cut area, followed by a pair of action
specifications each consisting of selecting the thumbtack
involved, selecting an action type (in this case a click) and
setting the position of the click using a crosshair indicator –
a total of seven selection or positioning actions. Our ob-
servations show that after minimal training designers can
create such a specification in well under a minute.
Some important things to note here are that:

(1) BOXES is implementation independent. The same
process could be used with any media player, or
with a custom application developed by the designer
using her tool of choice

(2) BOXES is form independent. Assuming it is possi-
ble to attach a wired thumbtack or foil pad, the de-
signer can approach physical design using her tools
and process of choice

(3) BOXES is intended to support a flexible, integrated
design process. It enables rapid back-and-forth ex-
ploration of issues of form (such as button position)
and issues of interactivity (such as whether navigat-
ing to a new song should pause or stop the song that
is currently playing).

(4) BOXES is “interpreted” and immediately executa-
ble. At any point, the developer can “run” the ac-
tions associated with any button.

(5) BOXES does not include a display. Although this
limits the fidelity of the prototype being created, it
helps to maintain the flexibility that designers in our
interviews value. It also allows designers to explore
rich visual affordances cheaply and quickly on the
more capable PC platform. This is appropriate for
the early stage of the design process on which we
are focusing.

IMPLEMENTATION
BOXES consists of two core pieces: one or more hardware
boards to which thumbtacks are attached by wires, and a
software interface in which thumbtacks are associated with
on screen actions.

Parts List
1 4 MHz resonator
1 Piezo-speaker
1 Serial connector
1 PIC 16F767 µcontroller
1 0.1 µF (bypass) capacitor

(hidden under serial connector)
8 0.1µF (accum.) capacitors

 1 8 Connector terminal block

Figure 3. BOXES touch sensor board (approx. actual size) and
parts list

291

Pin A

Pin B

µController

Acc Pad

Figure 4a. Capacitive touch sensing circuit

Pin A

Pin B

µController

Acc Pad

ChargeVcc
(+5v)

+

Figure 4b. Charge phase of sensing.

Pin A

Pin B

µController

Acc Pad

Pump

+

0 1

Figure 4c Pump phase of sensing

Hardware
The BOXES system makes use of small custom circuit
boards (50mm x 27mm). As shown at approximately ac-
tual size in Figure 3, each board contains a single inexpen-
sive microcontroller (a PIC 16F767) nine small (0.1uF)
capacitors, a 4 MHz ceramic resonator, a small piezo
speaker, and two connectors. Each board provides eight
capacitive touch sensors that can be connected to a thumb-
tack or foil pad by a single wire. Currently we solder this
wire to a small earring clasp that easily fits over and grasps
the thumbtack pin, creating an electronic connection to the
thumbtack. Foil pads are typically held in place by a wired
thumbtack and tape. Inputs are reported from the board
using a TTL level (5v) serial signal. Currently this signal
is delivered to the PC on the USB serial bus by means of a
small, off the shelf, adaptor board. It may also be possible
to make use of compact, off the shelf, BlueTooth wireless
modules which have recently become available.
The board provides eight copies of the capacitive touch
sensing circuit illustrated in Figure 4a. (This circuit has
also been employed for example in [5] and see [8] for addi-
tional approaches) With proper firmware (described be-
low), this circuit can measure the very small capacitance
existing along the capacitively coupled path between the
attached thumbtack and ground (possibly passing through
the user). This path is represented in Figure 4 by the “Pad”

capacitor at the right (which we will refer to as a virtual
capacitor since it is not an actual electronic component).
Although this capacitance is always quite low, it is much
higher when a person is very near to or touching the
thumbtack or foil patch than when the path goes through
free air. The touch sensor operates by detecting significant
changes in this measured capacitance. Note that no direct
electrical connection is required, and the sensor is sensitive
enough to operate reliably when the thumbtack is placed
under a layer of masking tape. This allows the designer to
optionally cover buttons and draw meaningful labels over
them (a capability that we found important in our prelimi-
nary testing).
The circuit in Figure 4a works by repeatedly pushing a
charge out to the (virtual) capacitor associated with a
thumbtack or foil, then transferring (or pumping) that
charge back into the larger accumulation capacitor (marked
“Acc” in the center of Figure 4). When a human is near the
thumbtack, the capacitance in the virtual capacitor in-
creases, causing more charge to be held in the first step,
and causing the accumulation capacitor to receive more
charge in the second step. Measurement is performed us-
ing only digital components, by counting the number of
pump cycles necessary to raise the accumulation capacitor
from an initial ground state to above the minimum voltage
that registers as a logic 1. This is done in a series of steps
illustrated in Figures 4b and c and detailed in the code
shown in Figure 5.
As indicated in Figure 5, the main algorithm is a loop that
repeats a charge phase and a pump phase until input Pin A
reaches logic 1. In the charge phase, a small charge is
pushed to the thumbtack and beyond using the circuit

// Reset charge Acc capacitor by grounding
// both sides
Output Low(Pin_A);
Output Low(Pin_B);

// Loop, counting pump cycles needed to
// raise Acc capacitor above logic 1 min
count = 0;
while (Input(Pin_A) != 0 && count < max_cnt)
{
// Charge cycle (Figure 4b)
Input(Pin_B);
Output_High(Pin_A);

// Pump cycle (Figure 4c)
Input(Pin_A);
Output_Low(Pin_B);

// Count this round
count++;

}

// the more cycles required the lower
// capacitance of the pad...
return count;

Figure 5. Capacitive sensing code

292

shown in Figure 4b: Pin A is configured to Output_High
(the logical equivalent of connecting it to the positive sup-
ply voltage, in this case +5V) and Pin B to high impedance
input (effectively disconnecting it from the circuit). The
amount of charge that accumulates at the thumbtack (la-
beled Pad in Figure 4) depends on whether or not a human
is present. Next, in the pump phase, this charge is pulled
back to the accumulating capacitor using the configuration
in Figure 4c: Pin A is configured as a high impedance input
and Pin B as Output_Low (effectively grounding it). This
causes charge to flow from the thumbtack towards Pin B,
and into Acc, the accumulating capacitor. During each
repetition of this cycle, charge accumulates in Acc and its
voltage rises. The number of charge/pump cycles necessary
to raise the voltage across this capacitor above logic 1
minimum is inversely proportional to the capacitance of
Pad and is thus directly related to whether or not a human
is touching the thumbtack.
The firmware in the BOXES sensor board carries out this
sensing algorithm in parallel for our eight sensing circuits.
Using a 4 MHz clock rate (corresponding to one million
instructions per second on the PIC 16F767 processor) the
current firmware completes a charge/pump cycle for all
eight sensors every 132 µsec and a complete capacitance
sensing approximately once every 52 msec (or just short of
20 times per second). The firmware uses these raw sample
values to maintain a running average of the current sensed
value for each circuit and reports an event to its serial inter-
face when a sufficiently large change from the running
baseline is observed. When an event is reported a very
short audio feedback chirp is also produced to help com-
pensate for the lack of tactile feedback in these touch but-
tons. By working relative to a running average the sensor
is able to adapt to different baseline capacitance values
automatically. This is an important property both because
of the “floating” ground inherent in this circuit, and be-
cause the use of tape over sense pads in some places but
not others, as well as the vagaries of wire routing and other

environmental conditions, can result in rather different ab-
solute values at different times or different places.
The firmware for the sensor board is currently comprised
of about 1300 lines of C code and consumes about 1.75K
(14 bit) words of program memory (of 8K available) and
120 bytes of RAM (of 368 bytes available).

Connecting Inputs to Actions
Whenever a thumbtack or foil patch is touched by a person,
the hardware sensor board sends an event notification to
the Action Cutter subsystem, the PC-side software associ-
ated with the BOXES system. This subsystem is responsi-
ble for translating these events into actions that the de-
signer would like the prototype to carry out in response.
To achieve the fluidity and flexibility needed for rapid pro-
totyping, it is critical that the Cutter subsystem allow very
rapid specification of actions. At the same time, it is im-
portant both to provide access to a very rich set of capabili-
ties and to allow designers to create custom actions using
familiar tools, when desired. In short, the system needs
both a very low threshold for first use and a relatively high
ceiling [17] in terms of range and scope (but not polish,
robustness, or ability to support “production quality” re-
sults)
Rather than trying to accomplish this through a sophisti-
cated, custom made programming infrastructure, we take
the approach of reusing the functionality of other pro-
grams. This allows us to provide nearly instant access to
the rich capabilities of commercial programs such as media
players, web browsers, personal productivity tools, and
many others. This approach can also support custom ac-
tions programmed in tools already familiar to designers
such as Flash, Director or Visual Basic.
To avoid limiting the set of programs and programming
environments our designers can make use of we have taken
the approach of simulating interactive actions – each
sensed physical action can be translated into a series of
mouse and keyboard events which are injected into the

Thumbtack selection
(indicating “press” of

thumbtack #1”)

Action sequence specification
(indicating 3 sample event delivery steps)

Screen cutting and focus area
(focused on the “play” button of the RealPlayer™)

Figure 6: The Action Cutter interface

293

system as if a user had carried them out (this capability is
implemented in a platform independent way using the Java
Robot class [3]). This allows physical button presses to
execute actions by means of on-screen button presses,
menu selections or more complex sequences of actions.
The interface shown in Figure 6 is used by the designer to
specify the translation between sensed physical actions and
on-screen actions. This interface has three main sections:
thumbtack selection, action specification, and screen cut-
ting selection and focus.

Thumbtack selection
On the left, the designer can select a thumbtack number,
and indicate whether an action or actions should be taken
in response to press or release (or both) of the correspond-
ing thumbtack or foil button. To promote fluidity, all but-
tons are active by default – touching them causes the corre-
sponding specification label to flash (if visible) and any
associated actions to be carried out. This helps to encour-
age interactive testing as actions are specified. The user
also has the option of temporarily disabling action execu-
tion to avoid accidental firings (for example, while thumb-
tacks are being repositioned).

Screen cutting selection and focus
The heart of the action specification system is the screen
cutting facility appearing on the right side of the interface.
The designer creates a cutting (similar to those supported
by the Snip [9] and WinCuts [20] systems) by selecting an
area of the desktop. This cutting serves as a visual proxy
for the corresponding screen area, and is updated regularly
to track the appearance of that area. Within each cutting, a
crosshair can be positioned to indicate a focal position for
event delivery. Simulated events are delivered as if the
mouse were pointing at the focal position.
Each step in an action sequence can make use of a different
cutting. This allows actions to be carried out across several
different underling programs if desired. For example, an
audio prompt could be played with a sound player in one
step and a custom Flash interface used for the next. For
many prototypes, however, we have observed designers
reusing (copies of) a single cutting over the interesting part
of a program, but with the crosshair repositioned as
needed. To facilitate this common use pattern, the system
by default supplies a copy of the most recently used cutting
each time a new action step is introduced.

Action specification
In the middle portion of the interface the designer specifies
the particular series of mouse or keyboard events that are
associated with the thumbtack press or release specified on
the left. In our experience, most functionality can be speci-
fied with one or more mouse button clicks over the proper
button(s) on a screen cutting. However, keystrokes are also
used, and are particularly valuable for controlling menus
since in most programs all standard menus are accessible
through the keyboard (e.g., using the Alt and arrow keys).
Action Cutter provides designers with a small keystroke
recorder/editor for entering sequences of keystrokes.

Note that actions carried out by the Action Cutter are state-
less, in that they always perform the same action regardless
of the past history of interaction. This means for example,
that toggle switches which invoke different actions on
every other press are not directly supported within the cut-
ter itself. However, this kind of interaction can easily be
supported using custom interactive programs provided by
the designer (in the prototyping platform they are most
comfortable with). Based on our needs finding work, we
believe this tradeoff of power for simplicity is justified.
However, one of our preliminary test subjects did raise an
issue with this, so additional testing will be required to
determine whether this supposition holds, or instead a more
complex action expression mechanism is justified.

DEVELOPMENT, VALIDATION AND USE
Range of support
Our system is intended to support early-stage iterative de-
sign. As such, it is important to consider both the range of
applications that can be prototyped, and the range of proc-
esses for iterative design that can be supported or aug-
mented by our tool.
In many regards, the range of applications supported by our
system is in the designer’s hands. Interactively speaking,
our system can be used to explore a range of interactive
systems. While a significant range of interactions can be
simulated with the BOXES system, our hardware is best
suited to a range of physical forms typical of today’s mo-
bile technologies, such as mobile phones, remote controls,
MP3 players, mobile tour guides (e.g. [1]) and assistive
technology for elders (e.g. [19]), which do not make use of
large displays as a central component.
In terms of process, our approach also enables a range of
user feedback. We can learn about everything from what
weight and form factor is effective to the ergonomics of the
physical layout of buttons to the usability of interaction
choices. Many applications can be completely implemented
(in rough form) using our system. More blue-sky systems,
such as those that depend on hundreds of users, context, or
highly accurate machine interpretations of human speech or
actions can be supported via a Wizard-of-Oz protocol.

User feedback
We have conducted two rounds of tests supporting the it-
erative design of BOXES. The first, very early round, in-
volved a single designer who wished to explore the design
space for a mobile tool enabling people who are deaf to ask
“what just happened” (see [16] for more details). At this
point in the project, the ability to program was required to
attach functionality to the buttons.
The designer who used this version of BOXES was able to
program. However, she was more comfortable with design
environments such as Flash, and in this case she decided to
implement all actions via Wizard-of-Oz. She encountered
several problems because of limitations (and bugs) in the
early sensor implementation. The designer was creating a
device that was meant to be carried around for most of each
day. For this reason, she was interested in exploring button

294

Figure 7: Three designs created during our second round of tests.

placement on the human body. Her designs included in the
user’s pocket and a “bracelet-type band.” She tended to use
the buttons without any cardboard to simulate a very small
device. She did attach labels using paper and tape. How-
ever, the lack of cardboard made her designs a little too
fragile (wires could break off easily, for example). Also,
the presence of long wires between board and button may
have contributed to implementation issues.
After the initial test, we re-implemented parts of the
BOXES hardware. We also added the Action Cutter tool to
better support the implementation styles of designers. We
then asked three more designers to create interfaces using
BOXES. Unlike the previous test, which was conducted in
the field, these tests were scripted and were conducted in
the lab. Two of the designers were comfortable program-

ming in Flash, while the third worked almost exclusively in
PhotoShop and on paper and was uncomfortable with any
sort of programming. This test helped us to evaluate the
comfort level of designers with BOXES, and to see what
sort of process our tool supported.
Each designer was shown a demo in which the experi-
menter created a simple calculator that could add or sub-
tract two numbers. The experimenter then opened a media
player (RealOne Player) and asked the designer to create a
portable MP3 player using it as the back end. In addition to
the audio player, designers were given cardboard, scissors,
tinfoil, thumbtacks, and our hardware and software. Figure
7 shows final designs that were created.
All of the designers were very comfortable with physical
prototyping. All designers clearly iterated on both physical
layout and interaction choices as they went through the
design process. However, interestingly, two chose to test
their prototypes interactively only after all of the thumbtack
buttons had been placed and assigned actions, while the
other tested his prototype interactively as he specified the
action associated with each button.
The designer who tested along the way began by sketching
on the cardboard, and then chose a highly iterative process
in which placement, interaction, and testing were all modi-
fied with the addition of each thumbtack. He ended by cut-
ting the cardboard to a physical shape, and testing the
physical layout of the buttons one last time. The other de-
signers planned ahead more.
One began by attaching all of the thumbtacks his function-
ality called for to the cardboard. He then created all of the
interactive mappings in sequence, iterating on his choice of
mapping and button location as he went. After all of this he
conducted interactive tests. He too ended by cutting the
cardboard to a physical shape. He commented “I think I’ll
cut things at the end … because then I can lay out the but-
tons and cut it to shape later.”
The other started with the physical shape. She explored and
designed the shape in multiple dimensions, taping pieces of
cardboard together to create a form. Unconstrained by a
programmatic understanding of the particular limitations of
Action Cutter, she made use of a mode button so that she
could overload multiple functions on other buttons. She
then placed her buttons and kept careful track of the order
in which she connected them on a separate piece of paper.
She then started drawing labels indicating button function-
ality on the cardboard neighboring each button. When
asked if she wanted to use masking tape to put labels di-
rectly on the buttons she responded “yes definitely but
since it seems like such a low fidelity prototype ... these are
more annotations than instructions”
In all cases we observed that the designers quickly became
fluent with action specification using the Action Cutter
interface. Given a program providing the right functional-
ity, they were typically able to specify action responses in a
few seconds. The designer with no programming experi-
ence required occasional help: we had to explain that

295

modes were not possible, that the numbering scheme
started at 0 and not 1, how to assign two actions to the
same button, and when to move the crosshair. Also, we had
to suggest that she simulate a volume slider by associating
discrete volumes with a series of buttons placed on her
device. With all three designers, we found that after the
first few specifications, designers were able place their
focus on the object being designed, rather than on our tool.
Based on what we observed, we feel confident that the flu-
idity of our system is high, and is appropriate for early
rapid explorations.
All three designers felt that the system could be useful. One
commented “industrial designers want to reduce the num-
ber of buttons (e.g. remote control)… just with a mock-up
you cannot imagine how it would work, so this kind of tool
would be helpful…”
However, the designers pointed out some limitations. The
lack of a physical screen, and the inability to handle modes
without writing custom software (due to stateless actions as
discussed above) were issues. Another issue that arose was
in fidelity of form achievable with the early stage materials
we provided. In the words of one designer: “I would like
to have some sort of form I could [create] actual 3D shapes
[with], like blue foam.” Based on this, part of our future
work will explore additional mechanisms better suited to
materials such as blue foam (see below), and the tradeoffs
associated with stateless actions will need to be tested more
thoroughly.

CONCLUSIONS AND FUTURE WORK
In conclusion, we have presented the design of BOXES, a
system for prototyping interactive physical forms at the
earliest stages of design. We used a user-centered process
to create BOXES, including early ethnography and itera-
tive design based on tests with designers.
Using BOXES, interactive interfaces can be created from
everyday objects such as cardboard, masking tape, thumb-
tacks, and foil. Button behavior can easily be linked to ex-
isting applications or custom-designed interfaces using the
Action Cutter desktop tool. By leveraging existing applica-
tions to implement interactivity, we have created a system
with an extremely low threshold (because it can interoper-
ate with familiar, existing tools) yet, along the dimensions
of interest for prototyping, presents a comparatively high
ceiling when needed (because it can also work with poten-

tially complex custom programs created by designers in the
tools of their choice).
In the future, we will be exploring additional physical
forms for touch sensitive areas, looking in particular at new
attachment mechanisms which work particularly well with
additional form prototyping materials. For example, to
better support blue foam prototyping, we are exploring the
use of foil patches attached with specially prepared stiff
wire that can be pushed through the foam.
In addition, we are currently examining additional capabili-
ties for handling other forms of inputs with the same sens-
ing hardware (but with firmware additions, and possible
connector changes). For example, the circuit in Figure 8
can be used to measure a variable resistance (as might be
provided by a potentiometer, light sensor, force sensitive
resistor, or thermistor). This measurement is performed by
charging the (known, fixed) capacitor to the positive sup-
ply voltage, then measuring the time necessary for it to
decay below the minimum voltage for logic 1. Note that
replacing the variable resistor with a physical switch can
also be handled in a uniform fashion with this circuit – as it
can simply be treated as a special case where resistance is
either very low or very high. The firmware to support this
sensing is fairly simple. An open challenge, however, will
be to find a way to mix and match sensing modalities while
maintaining the zero configuration (“it just works”) prop-
erty of the original system, hence maintaining its full fluid-
ity.

ACKNOWLEDGMENTS
This work was funded in part Intel and IBM, as well as the
National Science Foundation under grants IIS-0121560,
IIS-032535, IIS-0205644 and IIS-0511895.

REFERENCES
1. G. D. Abowd, C. G. Atkison, J. Hong, S. Long, R.

Kooper, and M. Pinkerton, Cyberguide: A mobile con-
text-aware tour guide. Wireless Networks, 1997.
3(5):421-433.

2. D. Avrahami and S. E. Hudson. Forming interactivity:
A tool for rapid prototyping of physical interactive
products. in Proceedings of DIS'02: Designing Interac-
tive Systems: Processes, Practices, Methods, & Tech-
niques. 2002, pp. 141-146.

3. R. G. Baldwin, Introduction to the Robot class in java,
in www.developer.com. 2003.

4. R. Ballagas, M. Ringel, M. Stone, and J. Borchers, iS-
tuff: A physical user interface toolkit for ubiquitous
computing environments, in Proceedings of ACM CHI
2003 conference on human factors in computing sys-
tems. 2003. pp. 537-544.

5. P. H. Dietz and W. S. Yerazunis, Real-time audio buff-
ering for telephone applications, in Proceedings of the
ACM symposium on user interface software and tech-
nology. 2001. pp. 193-194.

Pin A

Pin B

µController

Acc

Figure 8: Circuit for measuring a variable resistor by measuring RC
decay time.

296

6. S. Greenberg and M. Boyle, Customizable physical
interfaces for interacting with conventional applica-
tions, in Proceedings of the ACM symposium on user
interface software and technology. 2002. pp. 31-40.

7. S. Greenberg and C. Fitchett, Phidgets: Easy develop-
ment of physical interfaces through physical widgets, in
Proceedings of the ACM symposium on user interface
software and technology. 2001. pp. 209-218.

8. Hinckley, K. and Sinclair, M. 1999. Touch-sensing in-
put devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 1999. pp.
223-230.

9. D. R. Hutchings and J. Stasko. Shrinking window op-
erations for expanding display space. in Proceedings of
the working conference on Advanced Visual Interfaces.
2004. Gallipoli, Italy: ACM Press, pp. 350-353.

10. S. R. Klemmer, J. Li, J. Lin, and J. A. Landay, Papier-
mache: Toolkit support for tangible input, in Proceed-
ings of ACM CHI 2004 conference on human factors in
computing systems. 2004. pp. 399-406.

11. J. A. Landay, Interactive sketching for the early stages
of user interface design. PhD Thesis, 1996, School of
Computer Science, Carnegie Mellon University.

12. J. Lee, D. Avrahami, S. Hudson, J. Forlizzi, P. Dietz,
and D. Leigh. The Calder toolkit: Wired and wireless
components for rapidly prototyping interactive devices.
in Proceedings of the ACM Symposium on Designing
Interactive Systems (DIS'04). 2004, pp. 141-146.

13. J. Lifton., Seetharam, D., Broxton, M., and Paradiso, J.
Pushpin Computing System Overview: A Platform for
Distributed, Embedded, Ubiquitous Sensor Networks.
in Proceedings of the First international Conference on
Pervasive Computing. 2002, pp. 139-151.

14. Y. Li, J. I. Hong, and J. A. Landay. Topiary: A tool for
prototyping location-enhanced applications. in Proceed-
ings of the ACM Symposium on User Interface Software

and Technology (UIST'04). 2004. Santa Fe, NM: ACM
Press, pp. 217-226.

15. L. Liu and P. Khooshabeh, Paper or interactive? A
study of prototyping techniques for ubiquitous comput-
ing environments, in Proceedings of ACM CHI 2003
conference on human factors in computing systems.
2003. pp. 1030-1031.

16. T. Matthews, S. Carter, C. Pai, J. Fong, and J. Mankoff.
Scribe4me: Evaluating a mobile sound transcription
tool for the deaf. to appear in Proceedings of Ubicomp
2006.

17. B. Myers, S. E. Hudson and R. Pausch, Past, present,
and future of user interface software tools. TOCHI,
2000. 7(1):3-28.

18. M. Rettig, Prototyping for tiny fingers. Communica-
tions of the ACM, April, 1994. 37(4):21-27.

19. T. Starner, J. Auxier, D. Ashbrook, and M. Gandy. The
gesture pendant: A self-illuminating, wearable, infrared
computer vision system for home automation control
and medical monitoring. in ISWC 2000. 2000, pp. 87-
94.

20. D. S. Tan, B. Meyers, and M. Czerwinski, Wincuts:
Manipulating arbitrary window regions for more effec-
tive use of screen space, in Proceedings of ACM CHI
2004 conference on human factors in computing sys-
tems. 2004. pp. 1525-1528.

21. K. Van Laerhoven, A. Schmidt and H.-W. Gellersen.
Pin&Play: Networking Objects through Pins. in Pro-
ceedings of Ubicomp 2002, Lecture Notes in Computer
Science; Vol. 2498, Göteborg, Sweden. Springer Ver-
lag, September 2002, pp.219 - 229.

22. Wrensch, T., Blauvelt, G., and Eisenberg, M. 2000. The
rototack: designing a computationally-enhanced craft
item. In Proceedings of DARE 2000 on Designing
Augmented Reality Environments (Elsinore, Denmark).
2000. pp. 93-101.

297

