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Abstract

In this paper, we introduce Crowdclass, a novel framework
that integrates the learning of advanced scientific concepts
with the crowdsourcing microtask of image classification. In
Crowdclass, we design questions to serve as both a learn-
ing experience and a scientific classification. This is different
from conventional citizen science platforms which decom-
pose high-level questions into a series of simple microtasks
that require no scientific background knowledge to complete.
We facilitate learning within the microtask by providing con-
tent that is appropriate for the participant’s level of knowl-
edge through scaffolding learning. We conduct a between-
group study of 93 participants on Amazon Mechanical Turk
comparing Crowdclass to the popular citizen science project
Galaxy Zoo. We find that the scaffolding presentation of con-
tent enables learning of more challenging concepts. By un-
derstanding the relationship between user motivation, learn-
ing, and performance, we draw general design principles
for learning-as-an-incentive interventions applicable to other
crowdsourcing applications.

Introduction
Citizen science (CS) enables amateur scientists to make
valuable contributions to tasks such as text transcription and
image classifications. Over the past five years, online CS
platform have grown in popularity, attracting citizen scien-
tists of all ages and skills to help drive scientific discover-
ies. Even though CS is commonly regarded as a form of
scientific outreach, recent studies have shown that learning
in CS platforms often happens outside the context of the
crowdsourcing task (Jennett, Kloetzer, and Schneider 2016;
Iacovides et al. 2011). Existing CS project designs present
very little scientific background to the users, in order to min-
imize the latency of getting the users started on the task.
These designs are motivated by the concern that most par-
ticipants have a notably short attention span (Eveleigh et al.
2014) and the initial barriers of learning both the game me-
chanics and project content can be discouraging for starters.
As a result, most project tutorials contain minimal scientific
content.

Moreover, popular online CS platforms, such as Eyewire1
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and FoldIt2, often leverage domain-specific elements (e.g.
coloring outlines of microscopy cross sections, protein fold-
ing visualizations) to gamify the crowdsourcing microtask.
Since the learning content of these platforms are highly cor-
related to the game mechanics, the amount scientific content
that could be learned from these framework is not very ex-
tensible. Additionally, the content generation step for these
Games with a Purpose (GWAPs)(von Ahn and Dabbish
2008) is expensive and time-consuming for the scientist and
focuses more on making the task fun to encourage returning
contributions, rather than making learning the outcome.

To address these existing limitations, we applied Jennett
et al.’s (2016) theoretical work on learning and motivation
in CS projects to build Crowdclass, a framework that inte-
grates content learning with the crowdsourcing microtask of
image classification. In Crowdclass, users’ responses serve
as both a learning quiz and a classification task. We per-
form a between-group study to evaluate user performance,
motivation, and learning in Crowdclass against a control
study. This is the first CS project that proposes a general-
ized framework for combining learning and crowdwork at
the microtask level. We propose two different user contribu-
tion models and the use of learning as an incentive for in-
creasing participants learning and motivation. Our work not
only opens the learning-within-microtask design space in fu-
ture CS platforms, but we also draw general design princi-
ples for learning-within-microtask applications that can be
extended to other crowdsourcing contexts.

Related Work
Galaxy Zoo
Galaxy Zoo (GZ) is a popular CS project where users help
classify telescope images of galaxies according to their mor-
phology. The volunteers answer a series of question about a
particular image of a galaxy following a decision tree work-
flow. These classification results are useful for astronomers
to conduct population studies of galaxies and characterize
the relationship between galaxy morphology and their stel-
lar compositions (Willett et al. 2013). The volunteer’s scien-
tific contribution extends beyond just labeling images. For
example, in 2007 a Dutch schoolteacher pioneered a citizen-
led discovery when she reported an anomalous image of a
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photo-ionized cloud while sorting through the GZ images,
which generated considerable scientific interest in the theory
of black hole accretion at the center of these galaxies (Keel
et al. 2012). Part of the inspiration for Crowdclass was rec-
ognizing the inherently meaningful connections between the
crowdsourcing microtask and the scientific knowledge de-
rived from these classes. As GZ is an example of a success-
ful CS project, in this paper, we will be applying the GZ
model as a particular use case of Crowdclass.

CS Learning & Motivations studies
In Jennett et al.’s (2016) extensive studies of volunteer mo-
tivation, learning and creativity based on a series of ex-
ploratory interviews with citizen scientists and researchers,
they identified six types of learning commonly found in CS
projects: task mechanics, pattern recognition, on-topic learn-
ing, scientific process, off-topic knowledge and skills, and
personal development. Iacovides et al.(2011) distinguished
between micro- and macro-levels of engagement in online
CS projects, where micro learning happens when the user
is directly engaged with the crowdsourcing microtask and
macro learning originates from external sources, such as so-
cial forums and project documentations. Since most of the
content learning happens informally at the macro level, they
found that learning is correlated with volunteer’s level of en-
gagement, rather than quantitative measures of the amount
of time spent on the project or the number of microtasks
completed.

Inspired by this body of work, we designed a frame-
work to optimize participants’ learning and motivation by
enabling volunteers to learn something new as they com-
plete each crowdsourcing microtasks. While community and
social aspects of citizen science are highly valuable, in this
paper, we focus on designing a system that enables formal,
on-topic, content learning at the microtask level.

In our survey of existing online CS projects, we ob-
served that many CS platform designs are based on re-
search in the crowdsourcing communities, often performed
on Amazon Mechanical Turk (MTurk)3. For example, Tinati
et al. (2015) advocate designing tasks that make it hard to
skip a question, in order to encourage participants to make
their best guesses. Other examples include decomposing a
high-level, scientific question to a series of simple tasks, as
part of a decision tree and designing closed-ended, easy-
to-answer responses that are solely based on the geome-
try, color, shape of the object in the image. While crowd-
sourcing on MTurk and CS share many similarities, ap-
plying these MTurk crowdsourcing approaches to the de-
sign of CS platforms is problematic since the motivations
of citizen scientists is vastly different from motivation of
MTurk crowd workers. Common motivations to participate
in CS include a sense of contribution, learning, discovery,
fun and interest in subject area (Iacovides et al. 2013; Rad-
dick et al. 2013; Rotman et al. 2012), whereas MTurk work-
ers are mostly driven by monetary rewards (Harris 2011;
Marcus and Parameswaran 2015). Despite this difference in
motivation, many CS platforms still employ MTurk crowd-

3www.mturk.com

sourcing metrics for optimizing crowdworkers’ speed, la-
tency, and accuracy.

Learnsourcing applications
Recent works that combined crowdsourcing and learning
have pursued three related directions: 1) crowdsourcing con-
tent generation for online education platforms, 2) on-task
learning for crowdsourcing complex creative tasks, and 3)
integrating learning into the design of a specific microtask.
A common thread among these HCI applications is the no-
tion of “learnsourcing” (Kim 2015), the idea that learners
can act as the crowd that collaboratively improves the ed-
ucational content and interface based on their interaction
with the platform and thereby enriching their own learn-
ing experience. Existing application areas includes passive
learnsourcing (where the user’s clicks and interactions are
monitored and used as feedback to improve the educational
platform (Kim 2015)) and active learnsourcing (which fo-
cuses on integrating learning into the design of the micro-
task, such as summarizing or outlining key concepts in the
lecture videos (Weir et al. 2015)).

From the requester’s perspective, another motivation for
creating platforms that integrate crowdsourcing and learning
is to address the lack of a skilled MTurk workforce. In addi-
tion, it is difficult to evaluate the quality of complex, creative
tasks and provide automated feedback. Existing work in this
area include general frameworks for decomposing complex
work into basic, independent microtasks (Kittur, Smus, and
Kraut 2011; Little et al. 2009) and techniques for embed-
ding learning components inside the crowdsourcing frame-
works (von Ahn 2013; Dontcheva et al. 2014). For exam-
ple, Dontcheva et al. (2014) developed LevelUp, an inter-
active plugin for Adobe Photoshop to train crowdworkers
on the software mechanics and sharpen their photo-editing
skills. Another example is Duolingo4, a language-learning
platform which make use of foreign vocabulary quizzes re-
sults to assist the crowdsourcing task of web translation.
Both Duolingo and LevelUp are examples of how success-
ful designs of learnsourcing frameworks can transform a
complex crowdsourcing task (language translation, photo-
editing) into a learning task for the crowdworkers. Inspired
by these prior work, we sought to design a framework that
1) enable scientific concept learning within the crowdsourc-
ing microtask, 2) increase user engagement and motivation,
with 3) a generalizable content development workflow.

System Design
Decision Tree The program workflow is described by a
decision tree that guides the users through a series of ques-
tions to collect information about a single image. At each
level, the users are given a specific task with a set of possi-
ble responses. Once the users reach the bottom of the tree,
they begin to classify a new image starting from the top of
the tree. As shown in Figure 1, the Crowdclass decision tree
is a modified version of the GZ4 DECaLS decision tree5 and
contains 9 tasks and 18 possible responses.

4duolingo.com
5data.galaxyzoo.orggz_treesgz_trees.html
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Figure 1: Decision Tree for Crowdclass.

Content We propose a simple, general workflow to mini-
mize the amount of work for experts to generate the content
and questions used in Crowdclass. First, the expert lists all
the facts associated with a particular classification type, then
she selects the widely-known facts that are unique to that
class. Next, the facts are translated to a form of a True/False
question where the answer to the quiz that indicates mem-
bership of a class is noted in the system. The facts are then
used to generate hints and reading contents, while the ques-
tions are used for the classification microtasks. Future work
includes automating this content-generation process by ap-
plying methods from natural language processing and infor-
mation retrieval research. The educational contents used in
this study have been reviewed by professional astronomers
and educators to ensure the scientific correctness of the
learning modules.

Tinati et al.’s (2015) study of Zooniverse’s initial project
design showed that a large number of users left within 90
seconds of first visiting the site. Even though videos are
more interactive and richer in delivering content, the time
commitment to watch the video may cause users to drop out
of the project altogether. Such observations were noted dur-
ing the design evaluation of the CS project Virtual Atom
Smasher (Charalampidis, Segal, and Skands 2014). There-
fore, we chose to use short text, rather than animations or
short videos, for delivering the learning content.

Scaffolding Learning In Crowdclass, we decompose GZ
decision tree workflow into three subtrees of different diffi-
culty levels. This design was motivated by the problem that
having to learn all the scientific content associated with a
single classification can be overwhelming to novice users.
Each subtree acts as a different learning module with a fo-
cused learning objective. The “easy” learning module in-

troduces the scientific goals for studying galaxy morphol-
ogy and the basic properties associated with elliptical and
spiral galaxies. The “medium” level learning module cov-
ers galaxy dynamics (how galaxies interact in a collision
and how that impacts their morphology and formation). The
“hard” learning module focuses on the anomalous features
in galaxies, such as gravitational lenses and dust lane galax-
ies. As the users progress through the program, they “un-
lock” the more advanced learning modules after reading all
the contents available at that level.

This scaffolding design is motivated by Wood et
al.’s (1976) theory of scaffolding learning that advocates
strategies for experts to facilitate learning of skills and
knowledge that is initially beyond a student’s zone of prox-
imal development. While the theory was initially developed
for training motor task skills in toddlers, scaffolding learning
has been successfully applied to computer-supported collab-
orative learning contexts(Kahrimanis, Avouris, and Komis
2011). Here, we use the scaffolding design to enable formal
learning of more advanced scientific concepts.

Assistive Tools The existing GZ interface provides cue
words and example pages as assistive tools for guiding the
users through the classification tasks (Figure 3). Cue words
are short texts that remind the users about the category
they are currently classifying. Example pages contain im-
ages with brief texts showing what an object that falls under
a specific class looks like. These facilitate learning of project
mechanics for novice users, but are not intended to convey
any scientific content knowledge.

Other than facilitating better classification results, these
assistive tools can provide additional pedagogical value
when learning is incorporated in the microtask. For exam-
ple in Duolinguo, when a user is prompted the translation
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Figure 2: Example of the software interface for Group A
(Top) and Group B(Bottom) for the same question and im-
age.

task of “the apple” in French, they are shown an image of
an apple and an audio clip of “la pomme” is played back.
So even if the users did not know the translation beforehand,
they can still chose the right translation and in turn learn
from the microtask. Likewise, cue words serve a similar role
in Crowdclass to reinforce the learning of concepts associ-
ated with a particular class of objects. In Crowdclass, we
also provide customized hints associated with each question
to remind the users about the concept that they are trying to
learn.

Technical Details The system is developed on Django6

with CSS/HTML frontend hosted on a remote server. The
software design is intended to be as generalizable as possi-
ble. Particular emphasis has been made on what are the mini-
mum requirement required to build a working learning mod-
ule. In the future, this will enable scientists to upload their
data and create their own questions and learning modules
with ease. Both the code for building the Crowdclass frame-
work and for performing the statistical analysis described in
this paper are open-source7.

Method
Participants We recruited participants on MTurk over the
month of May 2016 through a pre-screening HIT. To ensure
work quality, we required that participants have a HIT ap-
proval rate of greater than 95% and have at least 50 HITs
approved in their work history. To prevent language barrier
as a confounding factor in comprehending the learning con-
tent, we required that the participant’s primary language is
English. The pre-screening HIT is separate from the main
experiment and consists of a 3-minute survey where work-
ers are paid $0.01. The user demographics is summarized in

6djangoproject.com
7github.com/dorisjlee/crowdclass

Figure 3: Examples of tools used for guiding users through
the Crowdclass tasks. Here, “Bar” is the cue word that re-
minds the users about the content that they read.

Figure 4.

Procedure We conduct a single-factor, two-level,
between-group study that consists of five main steps in the
following order: pre-screen survey, pre-test, main experi-
ment, post-test, and post-study survey. The between-group
study design prevents concepts and skills acquired from
a previous trial from confounding the measurements of
a subsequent study. We compensate the potential effect
of learning variability by verifying that the measured and
self-reported knowledge in astronomy in both populations
are similarly distributed. As some astronomical images can
be harder to classify than others, we prevent task difficulty
as an additional confounding factor by displaying the same
sequence of image tasks for both conditions.

The pre-test questions consist of 10 multiple choice ques-
tions displayed in random order. Each question contains
four answer choices and an additional “I don’t know” op-
tion. Six of the questions are fact-based questions, while
the remaining four are hybrid question, which requires the
participant to synthesize knowledge learned from multi-
ple different learning modules that they have encountered.
Correct responses to hybrid questions demonstrates sub-
ject understanding beyond simple recall of facts. While
participation in CS projects can often prompt users to do
exploratory learning on their own (Masters et al. 2016;
Kloetzer et al. 2015), we chose to control the experiment
by asking participants to answer the pre/post test questions
without relying on external references (books, web ..etc.) to
ensure that the test results only measures the learning that
happens within the microtask.

After the pre-test, participants in Group A interact with a
mockup of the GZ web interface and Group B participants
interact with Crowdclass (Figure 2). During the experiment,
we record the timestamps and choices performed in each mi-
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Figure 4: To ensure that the demographics of the two groups
are similar, we conducted the Fisher’s Exact test for the cat-
egorical variables and the Kolmogorov-Smirnov test for the
10-point, Likert-scale responses to show that the two groups
are similar.

crotask as well as the number of times the assistive tools
were used. At the end of the 30-minute study, the partic-
ipants are prompted a set of post-test question (identical to
the pre-test) and a post-survey. The participants are compen-
sated an additional $1 for completing the main experiment
and the post-survey. Since our pilot study showed that par-
ticipants can experience fatigue and performance degrada-
tion after 40 minutes, the length of study was limited to 30
minutes including the pre-test, which takes on average 6.4
minutes to complete. We were initially concerned that the
shorter experiment duration may not yield enough time for
participants to reach the medium and hard difficulty levels
to scaffold the content learning, but our experiment actually
finds that 89% of the users reached the medium level and
80% reached the hard level.

User Study
We received responses from 506 workers; some workers
were excluded from the analysis presented in this section
for the reasons:

• 73 were excluded based on the language pre-screening re-
quirement.

• 267 chose not to participate in the the main experiment.

• 15 in Group A and 12 in Group B dropped out of the main
experiment.

• 17 in Group A and 29 in Group B were excluded based on
our work quality filter. 8

After these filters, there was 46 workers in Condition A
and 47 workers in Condition B used for the analysis. Figure
4 shows that the demographics of the two groups are simmi-
lar.

8Workers who classified over 95 or under 5 images in the 30
minute experiment were not included in the analysis, the cutoff was
heuristically determined based on our pilot study results.

Figure 5: Bar chart comparison of pre/post test scores with
error bars indicating 95% CI.

Usage of Assistive Tools While the usage of assistive tool
varied largely depending on the individual, we use the num-
ber of times the examples and hint page is clicked as an in-
dicator of how engaged the participants are within the pro-
gram. The number of times the restart button is pressed ad-
ditionally serve as a measure of the participant’s perceived
level of uncertainty regarding their classification results.

The hint page was accessed 5.59 times on average
(SD=8.21). The Mann-Whitney test showed that Group B
participants clicked on the example pages significantly more
times than Group A participants and, by the number of
restart buttons clicked, Group B participants are significantly
more confident in their responses than Group A participants
(Table.1). Overall, we find that 26% of participants in group
A and 72% in group B used at least one assistive tool once
throughout the whole experiment.

RQ1: Can crowdworkers learn within microtask ?
To quantify the amount of learning that happens within the
microtask, we compute the overall score of the pretest and
the post-test, excluding the responses where users selected
“I don’t know” option (uncertain). The Kolmogorov-
Smirnov test to show that the initial pre-test scores (D =
0.13, p = 0.83) and the number of uncertain counts (D =
0.23, p = 0.16) came from the same distribution. As shown
in Table. 1, the Mann-Whitney test showed a significant
effect in the post-test scores with Group B outperforming
Group A. The participants in Group B also self-reported
higher levels of learning in astronomy than in Group A.
There is no significant difference between learning of the
scientific process in both conditions.

We also conduct an analysis on the uncertain counts as
a measure of how confident the users are about the content
that they learned in the main experiment. To calibrate for
the large variation in guessing behavior among the partici-
pants, we compute the change in the the number of uncer-
tainty choices for each individual user instead of comparing
the aggregate of the whole group to compare how the indi-
vidual uncertain counts change before and after the ex-
periment. Table.1 shows that Group B participants are sig-
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Figure 6: Bar chart comparison of performance measures
with error bars indicating 95% CI.

nificantly more confident in their responses than Group A
participants.

RQ2: How does learning within microtask affect
worker performance?
Accuracy Since there are no ground-truth labels for the
dataset used for the image classification task, we used two
different set of labels to measure user accuracy. The first set
of data is the morphological classifications of main-sample
spectroscopic galaxies from GZ2 (Willett et al. 2013)9,
which contains aggregate responses of 40∼50 citizen sci-
entists for each image(crowd). We use the consistency-
weighted fraction of votes for all the responses and threshold
of 0.5 to determine membership of a class. Since the sub-
classes are mutually exclusive, in the cases where GZ con-
tain multi-way selections, we sum the independent probabil-
ities to binarize the results. The second set of data used for
comparison is labeled by a professional astronomer directly
in the Crowdclass schema(expert). The crowdsourced re-
sults generally converges with the expert classifications.
Both comparisons and individual analysis of each microtask
compared against the crowd results showed that Group A
is significantly more accurate than Group B, as summarized
in Table. 2. When examining time series plots of workers’
accuracy, we found no significant learning effects of partic-
ipants getting better at the classification task overtime for
both groups.

Speed We use the timestamps recorded at the start of ev-
ery microtask question to compute an average classification
speed (number of images classified per minute). While our
hypothesis was that Crowdclass questions may bear an ad-
ditional cognitive load to the users, which would result in
slower classification speed, Mann-Whitney test showed no
significant effect in the speed. We think this result might be
partly attributed to the fact that binary selections in Crowd-
class are easier to chose from than the multi-way selections
in the GZ interface. Excluded from the classification speed is
the overhead time spent on reading the content pages, which
took on average 13.12 seconds per page (SD =10.64). Table.
2. shows that there is no significant difference between the
number of images classified between the two groups.

9data.galaxyzoo.org/data/gz2/zoo2MainSpecz.txt

RQ3: How does user motivation change when
learning is incorporated in the microtask ?
The 10-point Likert scale post-survey questionnaires ask the
participants how the program changed their interest in as-
tronomy, whether they feel a sense of contribution to sci-
ence from using the software, and how the program affected
their motivation to participate in other CS projects in the fu-
ture. As shown in Table. 1, a series of Mann-Whitney’s test
showed no significant effect (p>0.05) on the self-reported,
quantitative measures of motivation and learning.

Qualitative analysis
The qualitative post-survey questionnaires reveal important
insights into participants’ learning and motivation in the two
experiments. The thematic analysis results are summarized
in Figure 7.

Most participants in Group A cited that being exposed to
the subject area through the program workflow (“There were
so much different classification [sic] to learn and decide. I
didn’t know there were so many types of galaxies.”) and
pattern recognition (“I learned by repetition, and I gained
a ‘feel’ for the dimensions of the bulge.”) as their main
source of learning. Many were also inspired by the images
in the classification tasks and wanted to learn more. How-
ever, some participants expressed that “not knowing specific
details and definitions of wording” for conducting the clas-
sification task is discouraging:

• “The program made me feel inadequate in the subject. I
felt like I needed to do research in order to answer the
classifications [...] I thought I was out of my league.”

• “It was difficult enough to make me not want a science
career. I am not even sure I accomplished it correctly. I
felt defeated half way through.”

While Group B participants also noted that the task was
challenging and contributed to a source of confusion, they
felt that the tasks and readings motivated them to continue
on and learn more:

• “I was really motivated and thought really hard before an-
swering each question. This motivation came from the ex-
treme difficulty of the task at hand.”

• “The task and the quiz were engaging and challenging, so
they were very interesting, but they were easy enough that
I never felt like I wasn’t doing well or like I didn’t want
to continue the task.”

When asked about how the difficulty of the task and con-
tent affected their performance, interest and motivation, they
noted that the act of repeatedly applying what they have
learned helped with knowledge retention:

• “The program was very helpful for learning. Because I
was immediately applying the information that I learned
in order to classify galaxies, I feel like I retained the in-
formation very well.”

• “I liked being able to learn in an interactive manner and
have little breaks from reading.”
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Table 1: Mann-Whitney test results for self-reported learning and motivation measures.
U Z p r median mean rank

A B A B
Example count (engagement measure) 1318 3.13 0.0018 0.32 0 0 51.15 41.96
Restart count (response confidence measure) 848 -2.88 0.0041 0.44 0 0 41.93 51.96
post-test score 436.5 -3.99 6.77×10−5 0.44 40 68.3 31.41 52.58
uncertain count 134 -5.42 4.09×10−9 0.66 1 0 57.10 37.12
This software helped me learn something new about astronomy. 145.5 -2.06 0.039 0.31 8 9 19.39 27.44
This software showed me what the scientific process is. 297 1.64 0.10 0.25 8 7 25 18.53
I have a greater interest in astronomy after using the program. 264 0.83 0.41 0.13 9 7 23.76 20.5
This software increased my motivation to participate in other citizen science projects in the future. 255 0.63 0.54 0.09 9 8 23.44 21
I feel a sense of contribution to science from using the software. 247 0.43 0.68 0.06 8 7 23.15 21.47

Table 2: Mann-Whitney U test results for performance mea-
sures.

U Z p r median mean rank
A B A B

crowd 2052 7.46 2.2×10−16 0.77 0.81 0.61 68.11 26.34
expert 2088 7.74 1.04×10−14 0.80 0.80 0.60 68.89 25.57
Bar 1452 4.85 1.26×10−6 0.53 0.9 0.5 56.40 30.51
Bulge 1725 7.30 2.65×10−16 0.78 1.0 0.68 61 26.43
Dust lane 1396 6.70 1.78×10−14 0.75 0.85 0.36 53.84 18.89
Edge-on 389 -5.32 2.28×10−8 0.55 0.54 0.83 31.95 61.73
Elliptical 1603 4.01 4.13×10−5 0.42 0.72 0.6 58.34 35.91
Lens 1338 6.64 1.01×10−13 0.76 1.0 0.33 52.59 18.84
Merging 1233 2.78 0.0052 0.30 0.96 0.75 50.30 35.68
Spiral 1350 3.94 5.42×10−5 0.43 0.90 0.72 53.91 32.83
Tidal 1229 2.43 0.014 0.26 0.80 0.56 50.22 37.02
Speed 683 -1.89 0.059 0.20 1.71 2.01 38.35 48.49
Img classified 1328 1.90 0.058 0.20 35.5 26.0 52.36 41.75

• “I liked that after every explanation, the program went
back to questions about former subjects, so I didn’t for-
get what I learned a minute ago.”

While none of the participants explicitly discussed the scaf-
folding mechanism, some expressed how they enjoy “[go-
ing] from not knowing much to knowing some stuff” at each
difficulty level and how the interactivity of the learning ex-
perience was “much better than using a dry textbook.”

Discussion
Learning-within-microtask interventions
We apply Law et al.’s (2016) findings on curiosity interven-
tion in crowdwork to suggest a possible explanation for par-
ticipant motivation observed in the Crowdclass experiment.
They find that curiosity interventions that reveal too much
information satisfied the user’s curiosity too early on, caus-
ing the intervention to be ineffective. However, revealing
too little information discourages the effect of curiosity al-
together. There is an ideal “tipping point” where the curios-
ity intervention is most effective for inducing the workers to
complete the crowdwork.

While our study does not investigate user quitting behav-
ior in detail, we find a similar trend in user motivation where
the difficulty and amount of learning content characterize the
information gap. When group A participants are shown sim-
ple geometry-based questions, they complain that the study
is too long and boring. On the other hand, when they are
given questions containing challenging technical terms with-
out any context to understand these terminology, the partic-
ipants are discouraged from doing the crowdwork. This lat-
ter case is especially seen as the group A participants find it

difficult to classify gravitational lens, tidal debris, and dust
lane galaxies which are less obvious classification categories
compared to geometry-based categories such as elliptical or
spiral. By using the scaffolding design in Crowdclass, we are
able to show the participants just the right amount of infor-
mation to sustain interest and motivation in learning more
about the subject, while they are rewarded by reinforcing
their new-gained knowledge for every microtask they com-
plete.

Our study finds that while learning-within-microtask ap-
plications increases learning and motivation, participant’s
classification accuracy is lower than in conventional CS
project designs. As Rotman et al. (2012) explain that motiva-
tion is “highly dependent on scientists’ attitudes towards the
volunteers – when scientists acknowledged the need to edu-
cate people and not ‘treat them as dumb’ ”, we also find that
participants regard the challenge associated with the learn-
ing as an incentive for motivating them to continue work-
ing on microtasks when they are provided sufficient context
and background information. These multifaceted factors of
motivations characterize the more global picture for the CS
project in terms of the tradeoff between scientific productiv-
ity and learning, as described by Cox et al.(2015) and Mas-
ters et al(2016).

Design Space
After understanding the motivation factors and tradeoffs in
learning-within-microtask designs, we consider how these
findings can be applied to different contexts by proposing
two potential use cases.

“Citizen Learners” for microvolunteering Crowdclass
can be used as an educational software in a supervised class-
room setting or for independent, curiosity-driven learners.
Our learning-within-microtask design promotes a new view
of citizen science platforms as reference modules, where the
users’ objective is to learn something quickly or to gain a
general overview of a topic area.

These“citizen learners” differs from the typical GWAP
model where gamification elements encourage contributions
from returning users. Instead, these citizen learners can be
seen as “dabblers”, a term coined by Eveleigh et al. (2014)
to describe a large percentage of contributors on existing CS
platforms who are low-commitment, low engagement vol-
unteers, often too busy to find time to commit to the project,
but remain interested in the area. By offering learning as an
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Figure 7: Theme frequencies from three survey questions.

incentive, Crowdclass makes the crowdsourcing task more
worthwhile from the participant’s perspective.

Dabbler participation through microvolunteering can be
facilitated by embedding Crowdclass microtasks within tra-
ditional online reference learning sources. For example, the
archival Zooniverse project Cell Slider10 where volunteers
were asked to label tissue microarray (TMA) images of can-
cer tumor cores. If each person who reads a Wikipedia page
on cancer is prompted learning-within-microtask questions
to apply the concepts that they have just read on cancer to
score the TMA images, then the same amount of crowd-
work completed in Cell Slider’s four-year science campaign
would have only taken a couple months to complete.

This boost in scientific productivity can not only accel-
erate the scientific discovery progress, but also has poten-
tial for attracting a more diverse population than in exist-
ing citizen science platforms. Recent studies have shown
that most volunteers have already demonstrated an exist-
ing interest in science even before participating in the CS
project (Rotman et al. 2012; Raddick et al. 2013). In addi-
tion, since CS projects are often advertised through scien-
tific outreach outlets such as popular science magazines or
social media channels, these platforms are missing partic-
ipation from a large part of the “non-science” population,
who would benefit the most from these CS experience. By
prompting the users with learning-within-microtask crowd-
work in a low-barrier, self-rewarding setting, we hope that
the learning and sense of contribution from accomplishing
the microtask would inspire further engagement in the CS
project and sustained interest in science.

Feedback-facilitated active learning In our qualitative
analysis, participants expressed that the lack of feedback
on whether a classification is done correctly or not can of-
ten be a source of frustration, which can lead to dropout
behaviors. While most existing CS platforms do not pro-
vide active feedback for the users, we feel that this is a
crucial part of learning-within-microtask applications that
needs to be addressed in future work. As many existing stud-

10cellslider.net

ies have shown that feedback can help sharpen crowdwork-
ers’ skills and yield better work quality (Dow et al. 2012;
Glassman et al. 2016), feedback mechanisms for identifying
common fallacies in learners’ understanding or mistakes in
their classifications are especially important when learning
is incorporated in the microtask.

One exciting area of future work is to apply active learn-
ing to scaffold both image classification skills and content
learning within the microtask(Costa et al. 2011; Branson
et al. 2010). Current state-of-the-art machine learning al-
gorithms are capable of classifying galaxy morphology at
above 90% accuracy, but their results reflect the inherent er-
rors due to human classifiers in the GZ training set(Ferrari,
de Carvalho, and Trevisan 2015). Some machine learning al-
gorithms such as Support Vector Machines and Linear Dis-
criminant analysis can additionally generate an uncertainty
value associated with the labels, which can be used as dif-
ficulty estimates of how easy it is to classify a particular
image. These uncertainty values will enable us to display
the easy-to-classify images to novices and use these high-
accuracy, machine-generated labels to provide a automated
feedback mechanism to guide novices.

Feedback are not only important for novices, but essential
for training expert classifiers. For long-time, committed con-
tributors, known as “super-volunteers” in (Eveleigh et al.
2014), their objective is to make valuable contributions to a
CS project. Using the Crowdclass scaffolding mechanisms,
as these super-volunteers progress up the difficulty levels,
they will be given harder tasks and learning content over
time. In doing so, the users are kept motivated as they learn
about the more challenging concepts suited at their levels
and become skillful enough to distinguish the more ambigu-
ous images that are often misclassified by machine learning
algorithms.

Different CS projects can benefit from the two different
modes of engagement. For example, GWAPs such as FoldIt
and EteRNA11 encourage the supervolunteer model, since
supervolunteers often become experts at the project mechan-
ics and submits high-quality crowdwork. This contribution

11eternagame.org
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model aligns with the science goal of the project: finding
the functionally-best protein folding, rather than collecting
many possible different protein-folding configurations. On
the other hand, in many Zooniverse projects where the mi-
crotasks are largely independent and easy-to-learn, the sci-
ence goal (e.g. classifying 90,000 galaxies) can be achieved,
whether the platform attracts a large number of dabblers, a
few super-volunteers, or a hybrid of both.

Limitations
As discussed in an earlier section, while CS and MTurk
share similarities, there are notable differences in partici-
pant motivations. Even though we recognize that recruiting
our participants on MTurk may threaten the external valid-
ity of our experiment, it was our best option for gathering
large numbers of participants to test our primary hypothesis
of whether learning occurs under these interventions. While
we tried to compensate for these effects by filtering out users
with malicious intents, this population difference may con-
tribute to why we did not see a difference in motivation be-
tween the two groups from the Likert scale responses. We
suspect that since the participants may not have fully under-
stand the connection between citizen science, they did not
feel a strong sense of contribution to science from both inter-
faces. Our hypothesis is that if this experiment was deployed
on a CS platform such as Zooniverse, we would expect to see
more notable differences in participant motivation. A longi-
tudinal study in a non-incentivized platform is required for
further understanding the preliminary findings presented in
this paper.

While we find that Crowdclass enables users to learn sig-
nificantly more about the science involved in the project than
in GZ, the classification accuracy of Crowdclass users is also
significantly lower than the GZ users. This is potentially due
to user’s confusion resulting from the cognitive overhead of
trying to learn and classify at the same time. The issue can
potentially be alleviated if feedback is provided to the users
to correct misunderstandings.

One limitation to our existing implementation is that all
the questions in Crowdclass are True/False questions. We
have not yet been able to incorporate learning within mi-
crotasks involving multiple choices with numerical or cat-
egorical outputs. Our future work includes developing suit-
able methods for extending microtask learning beyond bi-
nary classification.

Conclusion
In this paper, we present Crowdclass, a novel, generalizable
system for combining learning and crowdwork at the mi-
crotask level. Crowdclass prompts the users with scientific
knowledge about the types of object that they are classifying
and quizzes the users on these content to obtain the classifi-
cation results. Using a scaffolding mechanism, we are able
to show them the appropriate learning modules suited to
their knowledge level with focused learning outcomes. We
conducted a between-group user study with 93 participants
where we compared user’s performance, learning, and moti-
vation in Crowdclass to the existing GZ interface.

We observed that Crowdclass users learned significantly
more content knowledge within the microtask than the con-
trol group, but the users’ classification accuracy was lower
than the control. There was no significant differences in
worker’s productivity and motivation between the two con-
ditions. The qualitative results showed that the challenge
of the task and reading motivated the Crowdclass users to
continue working on the microtask. Crowdclass users also
found that the act of applying their newly-gained knowledge
to classify the galaxies helped them retain the information
better.

Crowdclass offers the HCI community a novel approach
to citizen science, where content learning is presented as an
incentive for user motivation and closely integrated with the
design of the microtask. From our study results, we draw
general design principles for learning-within-microtask ap-
plications that are applicable to other crowdsourcing con-
texts. Future directions of our work include leveraging task
difficulty generated by machine learning classifiers to pro-
vide a mechanism for guided feedback and scaffolding
learning.
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