
On-line Collision Avoidance for Multiple Robots Using

B-Splines

Eric Paulos

Report No. UCB//CSD-98-977

January 1998

Computer Science Division (EECS)
University of California
Berkeley, California 94720



On-line Collision Avoidance for Multiple Robots

Using B-Splines

Eric Paulos

January 1998

Abstract

Real world assembly sequences consists of multiple assembly steps, many of which
can be performed in parallel. In practice this parallelism is often not exploited
because of the complexity involved in avoiding collisions between all of the robots.
In this paper we describe a simpli�ed method of achieving smooth collision free
paths for multiple robots within a single assembly workcell. Our method is simple
because we exploit properties of B-splines to reduce the problem to path planning
without moving robots. We develop a path planner to compute an initial linear
path. Using that path as input, a trajectory generation tool creates a collision
free path of any desired continuity. We exploit three properties of B-splines: (i)
continuity for smooth paths, (ii) convex-hull for collision avoidance, and (iii)
locality for dynamic course alteration without loss of continuity. In addition,
our system runs in real-time, easily accommodating multiple robots. Finally, we
describe a user level visualization tool for this system.

1 Introduction

Typical assembly tasks exhibit locality. An action in a local region is followed
by a transport to a new local region where the next operation is performed. We
exploit this locality of assembly operations (See x5.1) and observe that we can
categorize every robot into one of three possible states: (1) idle, (2) transport,
or (3) task. In addition we claim that this is a correct state model for almost
any robot workspace, particularly in an assembly workcell. The two states: idle,
robot not involved in any motion or task, and transport, robot in motion be-
tween a start and goal position, are rather clearly de�ned concepts. The task

0This work was originally reseached in 1994. Financial support provided by National Sci-

ence Foundation Presidential Young Investigator Award #IRI-8958577 and National Science

Foundation Grand #IRI-9114446.



state includes local motions that require full control of the robot, not simply
satis�ability of start and goal positions. Typical tasks are end-e�ector com-
pliance and damping, search strategies, tactile sensing, line scanning, probing,
and any other approach that relies on some form of specialized feedback control.
The advantage of our technique is that we can ignore motions of other robots,
reducing the problem to path planning without moving robots.

In this paper we investigate the development of four tools, a workcell free-
space path generation tool, a general trajectory generation tool, a workcell man-
agement agent, and a user workcell visualization tool. We demonstrate how
these tools combine into one powerful utility for managing the interactions of
multiple robots. The application platform that this system was actually de-
signed for is an assembly workcell robot. However, it can be applied to any
multi-robot system that can maintain relative position information.

1.1 Previous and Related Work

The importance of planning and generating collision free paths for multiple
robots has led several others to propose methods for solving this problem. One
approach is to add time to the dimension of the con�guration space. In general a
k-dimensional changing environment can be represented as (k + 1)-dimensional
space-time. Collision free path planning then occurs in this higher-dimensional
space-time. Reif and Sharir [17] prove the existence of collision free paths in this,
monatomic time, higher-dimensional space. Prioritizing the order in which to
plan the individual robot paths is explored by Erdmann and Lozano-P�erez [7]
and later by Buckley [4]. Aggarwal and Fujimura [1] describe a specialized
use of the cell-decomposition approach in space-time to handle rotations of
planar robots. When objects are moving non-deterministicly, Tsubouchi and
Arimoto [21] show that it is sometimes possible to track and forecast the motions
of these other moving obstacles and plan paths based on those results. The
development of path planning for multiple robots that are tethered is studied
by Parsons and Canny [15] and later by Hert and Lumelsky [11].

The use of splines in trajectory generation has been proposed by Lin et
al. [12], and more recently by Yi and Kim [22] who demonstrate methods to
optimize trajectories using cubic splines. Simon and Isik [19] present the use of
trigonometric splines to compute minimal jerk trajectories on a 6R robot. Choi
et al. [5] examine how the tension parameters of Catmull{Rom splines can be
used for building trajectories for in�nitely exible snake-like robots. However,
the application of B-splines for multiple robot path planning and trajectory
generation is rather new. Thompson and Patel [20] characterize a technique
that uses multiple knots for interpolation of joint angles on a single 6R robot.
They gain interpolation at the cost of locality. Our approach di�ers signi�cantly
in that we exploit the B-spline properties of locality, continuity, and convex-hull
for collision avoidance, and dynamic course alteration in a multi-robot system.

2



TOOL

GENERATION

PATH

TOOL

GENERATION

TOOL

TRAJECTORY

WORKCELL

MANAGEMENT

AGENT

WORKCELL

VISUALIZATION

ROBOT

CONTROLLER

Figure 1: The interactions of the di�erent tools involved in the collision avoid-
ance framework

1.2 Overview

In our system a workcell management agent orchestrates the high-level actions
within the workcell (See Figure 1). One duty of the workcell management agent
is to grant robots permission to traverse the workcell. When a robot desires
to travel to a new area of the workcell, the workcell management agent grants
the request and uses the path generation tool to provide the robot with a 1-
dimensionalC0 path to follow to the goal. The robot in turn hands this path o�
to the trajectory generation tool to be converted to a 1-dimensionalCk�2 curve,
where k is the order of the B-spline (see x3.1). We also compute the derivatives
of the curve so that they can be used for passing raw motion commands down
to the low-level robot controller.

The B-spline trajectory will also be used to perform collision avoidance for
the robot. This is done by broadcasting its current B-spline interval to all of
the other robots. From that information the other robots can determine the
k control vertices with non-zero B-spline basis functions that form the convex
hull of the moving robot's location. The changing convex-hull of a robot as it
traverses various intervals of the B-spline path is shown in Figure 2. The other
robots enter this convex obstacle into their obstacles list. If any of the other
robots need to perform a motion, the �rst level path planner will handle the
moving robot correctly. This can be observed since even though the robot is
in motion, it appears as a �xed obstacle. When the robot moves to the next
interval, it broadcasts this so that the other robots can change their view of the

3



V1

V2

V3
V5

V6
V7

V1

V2

V3

V4

V5
V6

V7

V1

V2

V3

V4

V5
V6

V7

V8 V8

V8

V1

V2

V3

V4

V5

V6
V7

V8

V1

V2

V3

V4

V5
V6

V7

V8

Convex Hull

Con
tro

l V
er

te
x

B−Spline Curve

V1

V2

V3

V4

V5
V6

V7

V8

V4
(1) (2)

(3) (4)

(5)

Figure 2: A B-spline robot path with continuously updated (k = 4) control
vertices forming the convex hull of each C2 curve segment

workcell obstacles, removing one vertex and adding one vertex to the moving
robot's convex-hull obstacle. This technique is applicable to any number of
moving robots. The only condition is that the robots go through a mutually
agreed upon arbitrator for disputes. This is the job of the workcell management
agent.

2 Path Generation Tool

Each robot maintains its own version of the workcell state. The state is rep-
resented by the robot's current con�guration, the boundaries of the �xed ob-
stacles, and the convex regions containing other robots. From the vantage of
each robot, idle robots appear as �xed obstacles. Task robots appear as �xed
obstacles de�ned by the particular convex region allocated for that operation.
All of the remaining robots are transport robots and appear as �xed obstacles
de�ned by the k, where k is the order of the B-spline (See x3.1), control vertices
of the current B-spline interval.

Each robot performs its ownMinkowski sum operations on the various robots
and �xed obstacles in the workspace, reducing itself to a point. As a result,
each robot has a geometrically di�erent yet physically consistent view of the
workspace. Each robot also, computes a visibility graph for its version of the
workcell. These visibility graphs can be constructed in O(n2 logn) where n is
the number of vertices in the original graph. More e�cient algorithms have

4



been proposed that bring this down to O(m + n logn) where m is the number
of edges in the visibility graph. In the worst case m is in O(n2) but in better
cases it can be as small as O(n).

Eventually, the workcell management agent will make a request to the path
generation tool to �nd a path between two points for a particular robot. The
path generation tool, using the previously computed visibility graph, calculates
the shortest path using Euclidean distance as an edge weighting metric. Search-
ing a visibility graph for its shortest path can be done using various techniques.
Dijkstra's or the A� algorithm can �nd the path or return failure in O(n2), or if
the list of vertices is pre-sorted, in O(m logn) where m is the number of vertices
in the visibility graph. The resulting list of vertices in the path is passed on to
the trajectory generation tool for conversion into a smooth trajectory. We have
chosen visibility graphs and shortest paths because they are straightforward to
compute and are complete.

3 Trajectory Generation Tool

The trajectory generation tool ignores the location of obstacles in the workcell.
The path planner has already handled the generation of a collision free path
between the start and the goal con�guration. This is an important concept to
remember, since this decoupling of path planning from trajectory generation
has the a�ect of simplifying both the path generation and trajectory generation
tools.

3.1 B-Splines

A B-Spline is composed of multiple B-spline basis functions denoted by Bi;k(�u)
where i is the interval number and k is the order of the B-spline basis function.
Since in this paper we concern ourselves with uniformB-splines, the intervals are
de�ned by a uniformly spaced parametric knot sequence. The form of the basis
function is dependent upon its order, where order k B-spline basis functions
are curves of degree k � 1. A single B-spline basis function is constructed as k
piecewise curve segments, all of degree k � 1. These segments are constrained
to connect to one another with Ck�2 continuity and have unit area beneath the
basis function.

The entire B-spline curve, Q(�u), is composed of a vertex weighted sum of
the basis functions and can be written as

Q(�u) =
X
i

ViBi;k(�u)

where the Vi's are the control vertices. In Figure 3 we have a cubic, fourth
order, B-spline, with seven control vertices denoted by yi. It requires four basis
functions to properly de�ne each cubic curve segment. Hence there are three

5



Figure 3: A B-Spline curve and its basis functions

more basis functions (and three more control vertices) than there are curve
segments. Each basis function is nonzero over exactly four parametric intervals.
The leftmost basis function extends three additional intervals to the left of the
curve, and the rightmost three to the right. Summarizing: there are m + 1
control vertices, m+1 basis functions, m� 2 curve segments bounded by m� 1
knots, and m� 1+3+3 = m+ 5 knots altogether. The curve is generated as �u
runs from �u3 to �um+1. For lack of space, we direct the reader to several other
sources [3, 6, 8, 9, 18] for further discussions of B-splines.

3.2 Forming a B-Spline Trajectory

Continuity is the most important property of the path generation tool. By
using a B-splines of the appropriate degree/order, the continuity of the �nal
path can be adjust higher or lower depending upon the constraint parameters
of the individual robotic system. However, we propose the use of a continuous
jerk path since it strongly relates to the impact characteristic of the loading of
the system [13] as well as the rate of change of force producing acceleration [10].

Since we desire C3 continuity (continuous jerk), we adopt the use of �fth
order (k = 5) B-splines. The basis function is of fourth degree and composed
of �ve piecewise segments denoted by bi. We use a set of 25 equations and 25
unknowns that represent the continuity and unit area constraints of the basis
function to solve for its �ve segments. Notice that each segment of the basis
function is of degree four.

6



b�0 = 1
24u

4

b�1 = 1
24(1 + 4u+ 6u2 + 4u3 � 4u4)

b�2 = 1
24(11 + 12u� 6u2 � 12u3 + 6u4)

b�3 = 1
24(11� 12u� 6u2 + 12u3 � 4u4)

b�4 = 1
24
(u� 1)4

9>>>>=
>>>>;

(1)

We do not use these equation in the actual evaluation of B-splines. Instead
we use the Cox-DeBoor recurrence relation [6]. This recurrence, shown in Equa-
tions 2 and 3, can be generalized to compute a B-spline basis of any order and
derivative.

dj

dju
ViBi;k =

X
i

�i;j+1Bi;k�j (2)

where

�r;j+1 =

(
Vi for j = 0

�r;j��r�1;j
(Ur+k�j�Ur)=(k�j)

for j > 0
(3)

We develop two methods for transforming path vertices into B-spline control
vertices. First we concern ourselves with the explosion of interior vertices along
the path and then the selection of end-condition control vertices.

3.2.1 Interior Control Vertices

We will explode each interior vertex along the path provided by the path planing
tool into O(k) B-spline control vertices. This construction is done by adding
2(k � 2) + 1 control vertices along a line segment L and two vertices at other
calculated positions. The placement of the line segment L and the other two
points allow us to insure that the resulting trajectory will observe the physi-
cal limitations of the robotic system. The reason for the placement of control
vertices along a line segment is that the convex hull of every series of k consec-
utive vertices will lie outside of the obstacle. This is shown for each interval in
Figure 4.

We show the construction of the actual line segment L in Figure 5. We �rst
characterize the velocity and acceleration limits of the physical robotic system
with a circle of radius r. This circle represents a conservative estimate of the
minimum radius of curvature path that the physical robot can traverse. Again
B-splines do not in general interpolate the actual vertices and hence the radius
of the circle must be conservative. To optimize the shape of the B-spline, its
curvature can be calculated and matched to the minimum radius of curvature
of the velocity and acceleration constraints. We use the circle itself to construct
a �rst order approximation of optimal curvature.

We place the circle C such that its center lies equidistant from the two
segments of the shortest path, w, and coincident to the vertex m on the obstacle,
O. We form line segment A extending from the previous vertex of the shortest

7



Control Vertices

Shortest Path

Obstacle

B−Spline Trajectory

Convex Hull

Current
B−Spline Interval

(1) (2)

(3) (4)

Figure 4: The convex hull of each segment (shaded) and the fourth order B-
spline (k = 4) for a path rounding an obstacle

path and tangent to the circle C at point s. Similarly, we form the line segment
B as extending from the following shortest path vertex and tangent to the
circle C at point t. We construct the line L as passing through the vertex m

and tangent to the circle C at that point. The placement of control vertices is
then as follows: one at point s, 2(k� 2) along L between points u and v, one at
point m, and one at point t. In this construction u is the intersection point of
segments A and L. Similarly v is the intersection point of segments B and L.

Placing the control vertices such that we \hug" corners of obstacles is ac-
tually desirable. Many path planning techniques result in paths which are
\equidistant" from all of the obstacles, essentially traversing down the mid-
dle of the free space. While this is good for a single robot system, it seriously
degrades performance in a multi-robot system. By \hugging" the vertices of
obstacles, we minimally clutter the workcell transportation corridors, allowing
room for passage of other robots at the same time.

3.2.2 End Condition Control Vertices

Most trajectories ramp up from a complete stop and come to a complete stop at
their termination. This necessitates the construction of the end conditions of the
B-spline to have position speci�cation (i.e. end vertex interpolation), and some
derivatives at zero. We can achieve this by applying the technique of phantom
vertices developed by Barsky [2]. In essence this is a method for determining
the correct placement of extra control vertices before the �rst vertex and after

8



C

AB

r
s

t
L

O w

u v

m

Figure 5: Construction of line segment L and placement of control vertices

the last vertex to achieve some speci�ed condition(s) at the ends of the B-spline
curve. For the �fth order B-spline we have calculated the following phantom
vertex values for the beginning of the curve segment. We do not explore the
end conditions at the end of the curve since they are symmetric to those at the
beginning.

� Start vertex interpolation:

V�1 = 13V0 � 11V1 � V2

� Start vertex interpolation and zero velocity:

V�1 =
�V1

4
V1 +

5

4
V0

V�2 =
7

4
V1 �

3

4
V0

� Start vertex interpolation, zero velocity, and zero acceleration (triple ver-
tex):

V�1 = V�2 = V�3 = V0

Based on the desired end conditions, the trajectory generation tool transpar-
ently inserts these phantom vertices into the list of control vertices, yielding the
desired e�ect at the ends of the B-spline curve. If we make a path modi�cation
while the robot is in motion, these phantom vertices can be easily recomputed
to maintain the end-condition constraints.

9



3.3 Robot Controller

Robot controllers are typically quite diverse by nature of their underlying hard-
ware di�erences. Recent approaches to standardize such controller interfaces [14]
have yet to gain popularity. However, our trajectory generation control tool pro-
vides a wealth of output information, providing position, velocity, acceleration,
and jerk verses time. These are easy to compute using the recurrence relation
of Equations 2 and 3. Almost any commercially available robot system can use
one or more of these pieces of information to drive its low level controller. This
exibility makes our system well suited for a variety of robots.

4 Multiple Robot Interactions

The complex interactions between all of the multiple robots is handled automat-
ically by the tools discussed in our approach. A particular property of B-spline
curves is local control, by which we mean that altering the position of a single
control vertex causes only part of the curve to change. An added bene�t of local
control is that it minimizes the computational overhead required to recompute
a curve after a control vertex has been moved since only a small portion of the
curve has changed.

For example if we have two moving robots, X and Y, each traversing the
workcell, it may be the case that robot X's B-spline path moves into a new B-
spline interval. This means that one control vertex is removed from its convex-
hull and one vertex added. This in turn changes the convex-hull of robot X.
This may result in an alteration to the shortest path of robot Y. Robot X is
guaranteed not to a�ect the positions of the control vertices that are currently
being used to evaluate the B-spline path for robot Y because those vertices form
the convex-hull for robot Y. These vertices make robot Y appear as a �xed
obstacle to robot X. Clearly, robot X is not allowed to alter the appearance of
a �xed obstacle. Robot Y is currently in transport across the workcell, but its
future path will collide with robot X. The path planner has made the necessary
changes along the future shortest path to avoid such a collision. Since all of
the future B-spline basis functions for the original control vertices are zero, we
can remove those vertices and replace them with new control vertices that avoid
the collision. Robot Y will make the path correction when it starts evaluating
the B-spline basis functions over those new control vertices. In addition we
are guaranteed by the properties of B-splines that the path, although altered,
will continue to be Ck�2. This same argument is applicable to any number of
robots. This ability to dynamically alter paths and maintain both continuity
and end-condition constraints is a major bene�t of our system.

10



5 Workcell Management Agent

Use of a single agent to guide the actions within a workcell can be compared to
the actions of a memory manager in a virtual memory system. In a computer
operating system, memory is allocated to various processes. When the physical
memory is exhausted, the memory manager must choose a piece of memory to
reside in a less-desirable space, such as on a magnetic medium. However, when
the user process wishes to access that piece of memory again, the manager must
be able to return it to its previous location and state.

In the case of the workcell management agent, the resource is not memory,
but workcell real-estate and tools. This high-level management agent must be
able to deliver the various resources to a robot that requests them and also
retrieve them back if the robot gets \greedy." In our system we are mainly
concerned with the allocation of space. In a workcell with �xed tools this reduces
to tool management since only the robot that is in the area containing a tool
can use that tool.

5.1 Locality of Assembly Operations

Typical assembly tasks exhibit locality. An action in a local region is followed
by a transport to a new local region where the next operation is performed.
Common sites in a workcell are easy to identify from an assembly sequence:

1. Part enters the workcell on a conveyor

2. Robot transports part through sensors to localize and identify part

3. Part is transported to �xturing platform #1 to perform a sub-assembly.

4. Sub-assembly is transported to a holding area until the rest of the sub-assemblies are com-

pleted

5. Sub-assembly is moved to �xturing platform #2 for �nal assembly

6. Final assembly is transported to sensors for inspection

7. Final inspected assembly is transported to conveyor and leaves the workcell

Each of the operations above takes place in a rather small area of the work-
cell. By giving exclusive rights to each of these areas after a request is made,
the workcell manager maintains state information about the progress of work.
If a urgently needed part comes into the workcell and requests to be transported
to a �xturing device that's in use, the robot currently using the device can be
interrupted and priority given to the robot associated with the higher-priority
task, in this case the urgent transport of a part to a �xturing device. Again,
since operations are local, the other robots in the workcell will be una�ected by
this operation.

11



5.2 Allocation of Space

The workcell management agent is, in essence, a workcell space manager, main-
taining robot ownership rights over space within the workcell as well as perform-
ing arbitration between robots over space. Any time up until a robot releases
ownership of its space, it may move freely within that space. This is useful be-
cause once a robot has been granted ownership of a space, the collision avoidance
problem has been solved locally.

At some point in the assembly sequence, a robot will desire to move to
a new position in the workcell, call it the goal for that robot. In order for
that robot to perform that movement it must be granted \free passage" by the
workcell management agent. It does this by making a request to the workcell
management agent for passage to its goal. The agent will respond with one of
the following:

� Grant: There is a collision free path path for the robot to move through.
This is true if the path planner returns with a non-empty path to the goal.

� Fail In this case the path planner has returned an empty path list. The
robot may do another task or wait and try its request later. The workcell
management agent maintains a request table so that repeated requests will
eventually be granted. This request table keeps a robot from being starved
out of all of the resources in the workcell. In addition this will avoid most
deadlock condition that may develop as a result of dependencies within
the assembly sequence. Some deadlock conditions can only be avoided by
extremely high-level task planning at the user level. However, use of the
workcell visualization tool is extremely useful in identifying such problems
in the assembly sequence.

� Wait This is similar to the case above, in the sense that the path planner
has returned an empty path list. However, the workcell management agent
has decided that one or more of the obstacles preventing the completion of
the path are low-priority or idle robots. These are robots that the workcell
management agent can send an irrefutable request to move to a clear of
the workcell. AGrant signal is sent when the path has been cleared. This
is essentially a page swap. We have a resource, memory (space), owned
by a stale, non-accessed process (robot), and a request to use the resource
by another process (robot). The wait signal is just the page-fault until we
can swap out the old memory (clear the robots from the path).

A typical state of workcell space during an assembly sequence is depicted
in Figure 6. In this �gure there are four robots, three of which are performing
particular sub-assembly tasks in a locally owned region (shown shaded). These
qualify as task robots. The fourth is invoking the help of the workcell manage-
ment agent to plan a trajectory from its own space to another. This robot is

12



Multiple Robot Workcell

Robot 1

Robot 2

Robot 3

X

Y

Robot 4

Robot 4 (GOAL)

Robot

Robot’s

S
ho

rt
es

t P
at

h

Locally Owned Space

Figure 6: A typical multiple robot workcell depicting allocated space

an idle robot, however, once it begins moving it will be a transport robot. We
combine two of the previous techniques. First the path planner will return the
shortest path to the goal. Then the trajectory generation tool will produce a
collision free smooth path that will also provide convex regions of containment
for the moving robot to help the other robots reduce it to a �xed obstacle. The
workcell management agent arbitrates disputes and monitors all of the space
management to insure consistency with the other robots.

6 Workcell Visualization Tool

The visualization tool provides a graphical representation of the robot and work-
cell state. This tool allows a user to display any of the visibility graphs for each
of the robots along with its shortest path, convex hull, location, B-spline inter-
val, B-spline path and other useful information for debugging parallel assembly
sequences. The power of this tool is in allowing a user to watch the various
interactions within the workcell during an assembly task, and as a result make
better decisions about workcell tool placement and assembly sequencing.

7 Conclusion and Results

We have developed a generalized tool for high-level on-line collision avoid-
ance exploiting the continuity, locality, and convex-hull properties of B-splines.

13



Throughput with such a system is dramatically increased by allowing robots to
perform operations in parallel while freeing the user from the tedium of handling
the highly complex interactions between the various robots. In addition our ap-
proach exhibits the ability to dynamically alter paths in real-time and maintain
both continuity and end-condition constraints imposed by the system on each
robot. We have developed this within the framework of an industrial assembly
robot and parallelized assembly sequences to increase production throughput.
A typical pick-and-place/peg-in-hole assembly technique [16] adopted this sys-
tem and was parallelized, resulting in a 40 percent reduction in assembly time.
Finally, we demonstrate a user visualization tool for our system.

References
[1] Neejraj Aggarwal and Kikuo Fujimura. Motion planning amidst planar moving obstacles. In

IEEE International Conference on Robotics and Automation, pages 2153{2158, 1994.

[2] Brian Barsky. End conditions and boundry conditions for uniform B-spline curve and surface
representations. In Computers in Industry, volume 3(1&2), March 1982.

[3] Richard Bartels, John Beatty, and Brian Barsky. An Introduction to Splines for use in

Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1987.

[4] Stephen J. Buckley. Fast motion planning for multiple moving robots. In IEEE International

Conference on Robotics and Automation, pages 322{326, 1989.

[5] P.J. Choi, J.A. Rice, and J.C. Cesarone. Kinematics of an in�nitely exible robot arm. In
Journal of Robotics Systems, volume 3, pages 407{425, 1993.

[6] Carl de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

[7] Michael Erdmann and T. Lozano-P�erez. On multiple moving objects. In IEEE International

Conference on Robotics and Automation, pages 1419{1424, 1986.

[8] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press,
1988.

[9] James Foley and Andries van Dam. Introduction to Computer Graphics. Addison-Wesley,
1990.

[10] C. W. Ham, E. J. Crane, and W.L. Rogers. Mechanics of Machinery. McGraw-Hill, 1958.

[11] Susan Hert and Vladimir Lumelsky. The ties that bind: Motion planning for multiple tethered
robots. In IEEE International Conference on Robotics and Automation, pages 2734{2741,
1994.

[12] Chun-Shin Lin, Po-Rong Chang, and J.Y.S. Luh. Formulation and optimization of cubic poly-
nomial joint trajectories for industrial robots. In IEEE Transations on Automation Control,
volume 28, December 1983.

[13] Hamilton Mabie and Fred Ocvirk. Mechanisms and Dynamics of Machinery. John Wiley and
Sons, 1975.

[14] Ed Nicolson. Standardizing I/O for mechatronic systems (SIOMS) using real-time unix device
drivers. In IEEE International Conference on Robotics and Automation, May 1994.

[15] D. Parsons and J. Canny. Motion planning for multiple mobile robots. In IEEE Conference

on Robotics and Automation, pages 8{13, 1990.

[16] Eric Paulos and John Canny. Accurate insertion strategies using simple optical sensors. In
IEEE International Conference on Robotics and Automation, pages 1656{1662, May 1994.

14



[17] J. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In IEEE Confer-

ence on Foundations of Computer Science, pages 144{154, 1985.

[18] I.J. Schoenberg. Selected Papers Volume 2. Birkhauser, 1988.

[19] Dan Simon and Can Isik. Optimal trigonometric robot joint trajectories. In Robotica, volume 9,
pages 379{386, 1991.

[20] Stuart Thompson and Rajnikant Patel. Formulation of joint trajectories for industrial robots
using B-splines. In IEEE Transations on Industrial Electronics, volume 34, May 1987.

[21] Takash Tsubouchi and Suguru Arimoto. Behavior of a mobile robot navigated by an iter-
ated forecast and planning scheme in the presence of multiple moving obstacles. In IEEE

International Conference on Robotics and Automation, pages 2470{2475, 1994.

[22] Seung-Jong Yi and Kyuil Kim. E�ect of tension parameters and intervals on splines-under
tension based robot trajectory planning. In Journal of Robotics System, volume 11, pages
91{102, 1994.

15


