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Abstract

Probing is a common operation employed to reduce the position uncertainty

of objects. This thesis demonstrates a technique for constructing provably near

optimal probing strategies for precisely localizing polygonal parts. This problem

is shown to be dual to the well studied grasping problem of computing optimal

�nger placements as de�ned by Mishra et al. [18] and others [11, 17]. A useful

quality metric of any given probing strategy can easily be computed from simple

geometric constructions in the displacement space of the polygon. The approach

will always �nd a minimal set of probes that is guaranteed to be near optimal for

constraining the position of the polygon. The size of the resulting set of probes is

within O(1) of the optimal number of probes and can be computed in O(n log2 n)

time whereas the exact optimal solution is in NP-hard [8]. The result of this work

is a probing strategy useful in practice for re�ning part poses.
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Abstract

Probing is a common operation employed to reduce the position uncertainty of

objects. This thesis demonstrates a technique for constructing provably near

optimal probing strategies for precisely localizing polygonal parts. This problem

is shown to be dual to the well studied grasping problem of computing optimal

�nger placements as de�ned by Mishra et al. [18] and others [11, 17]. A useful

quality metric of any given probing strategy can easily be computed from simple

geometric constructions in the displacement space of the polygon. The approach

will always �nd a minimal set of probes that is guaranteed to be near optimal for

constraining the position of the polygon. The size of the resulting set of probes is

within O(1) of the optimal number of probes and can be computed in O(n log2 n)

time whereas the exact optimal solution is in NP-hard [8]. The result of this work

is a probing strategy useful in practice for re�ning part poses.

1 Introduction

In industrial manufacturing and automated assembly, accuracy is extremely im-

portant. Attaining and maintaining high precision can increase the cost of �x-

turing and feeding several fold [19]. The meaning of high verses low precision

depends on the application, but for typical mechanical assembly, low precision

tooling might provide accuracies in the tens of mils, while high precision would

be around one mil or less (One mil = 10�3 inch = 25:4 microns). This thesis

studies the pose re�nement problem. In pose re�nement, sensing is used as an

inexpensive route to high precision part pose, assuming the pose is already known
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at low precision. Most research to date in computer vision and RISC [5] sensing

addresses the pose acquisition problem, where pose is determined with no knowl-

edge of initial pose. The result of pose re�nement is a high-precision estimate,

but it di�ers from the problem of high-precision pose acquisition. Since initial

pose is approximately known in pose re�nement, it can be used to make judicious

choices about sensor placement. The same accuracy can be achieved with fewer or

less expensive sensors for pose re�nement as compared to pose acquisition, which

must deal with all possible poses.

Initial motivation for tackling this problem arose after visits to several state-

of-the-art manufacturing companies, especially PTI (Productivity Technologies

Inc.), Adept, and Hewlett Packard Labs. In typical industrial workcells, it was

pose re�nement rather than pose estimation that was the dominant sensing task.

There are two reasons for this:

1. Feeder economics: Vibratory feeders are an inexpensive way to provide

many part types in known (albeit low precision) pose. Small parts can also

be fed on tape, which is more expensive (a couple of cents per part) but still

costs far less than a high-precision pallet. So the initial and ongoing costs

of achieving low-precision pose without sensing are small.

2. Multi-step manufacturing: In typical manufacturing, there are not one

but several sequential stages, including assembly stages, testing and pack-

aging. A single step might mate two parts whose poses are known at high

precision. But the assembly step itself introduces a small amount of uncer-

tainty, and it is expensive to transport the partial assembly at high precision
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Figure 1: A typical simple reective sensor used for probing

to the next assembly stage. A more economical solution is to use pose re-

�nement at the next stage. So while there might be one pose acquisition

step per part to get approximate initial pose, there will be several pose re-

�nement steps for that part that start with the low precision output from

the previous step and feeder, and increase the precision as needed for the

next step.

So the arguments for pose re�nement are (1) that it replaces the most expensive

(high precision) �xturing and feeding steps and (2) it replaces the most frequent

�xturing and feeding steps in multi-step assembly.

This thesis focuses primarily on the use of simple light-beam sensors that act

as line probes. A point light source and receiver de�ne a line in space that is

broken and unbroken by an object as it moves relative to the beam (see Figure 1).

The positions of the object when the beam breaks give position readings, and

three or more of these determine pose. Those readings are subject to error, and
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the pose estimate accuracy is limited by those errors and the sensor placements.

This research provides algorithms for choosing the probe placements to achieve

near-optimal accuracy with a �xed number of probes, or to �nd a near-minimal

number of probes to achieve a speci�ed accuracy. An important assumption of

this work is that individual probing operations do not disturb or alter the part's

pose in any way. Common industrial optical sensors easily satisfy this constrain

by being contactless. The problem is best summarized with the following problem

statement.

Problem Statement:

Given: A polygonal part geometry and an initial pose estimate of

Oi = (Oix; Oiy; Oi�) within � = jO � Oijm of the exact actual pose of

the object, O.

Assumption: A probing operation leaves a part's pose unchanged.

Solve: Find the optimal set of point probes de�ned as the minimal

number of probes and their placement necessary to reduce the uncer-

tainty in the position of an object to better than some acceptable level.

The probes are de�ned by a set of �xed points and vectors denoting the

direction of travel for each probe. A probe returns a real value. That

value is the time or position that a simple binary sensor changes state.

The error associated with this value is at most �, where � � �, based

upon the presence or absence of an object's edge at a particular point

along the path of the probe.
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Figure 2: A typical initial probe placement along the edges of an object

With enough time, one could simply perform a large number of probes as

shown in Figure 2. However, in real industrial robotic assembly workcell design,

throughput is a heavily weighted criterion. Therefore, the goal is to produce the

best possible probing strategies that conform to the imposed constraints. The

probing strategies that result can be used by any line probe of the object's two-

dimensional projection. There are natural generalizations to higher dimensions,

although they are not as eÆcient. A typical probe, shown in Figure 1, consists

of a simple reective light beam sensor that can easily detect the presence or

absence of an object. The algorithm also allows for construction of specialized

optimal probing strategies such as those for a scanning array of probes as shown

in Figure 3.

These near-optimal probings are obtained with a small number of actual probes

by maximizing the utility of each sensor probe placed on the object. This in turn

makes the problem tractable for a real robot in a high throughput automation
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Figure 3: Example of a �xed array scanning beam sensor

system. These strategies are within a constant factor of the optimal probing

strategy and can be solved in O(n log2 n) time whereas the exact optimal solution

is in NP-hard [8].

2 Previous and Related Work

Since the resulting probing strategy is dual to the grasping problem and uses recent

results in set covering algorithms, related works in these areas are mentioned.

2.1 Work in Probing

The importance of probing in terms of localizing and identifying objects with

probes has been explored by several individuals. Cole and Yap [7] and Bern-

stein [1] developed algorithms for choosing probes to obtain the geometry of an

unknown two-dimensional convex object. A generalization of this strategy for

higher dimensions is presented by Dobkin et al. [9] while a non-convex version was
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developed by Boissonnat and Yvinec [2]. Also, Lindenbaum and Bruckstein [14]

describe similar probing strategies for a geometric probe composed of two line

probes rotating about a common axis point.

Development of eÆcient algorithms for scanning objects with probes for the

purpose of identi�cation and localization have been explored by Wallack et al. [24,

25]. Likewise, point probing strategies have been developed for insertion opera-

tions by Paulos and Canny [20].

Jia and Erdmann [13] demonstrate an elegant technique for choosing place-

ments of simple binary sensors to discriminate objects in the plane. In fact they

also employ recent work on hitting sets and set coverings in solving their problem.

The work in this thesis di�ers mainly in the type of problem that is solved. Jia

and Erdmann choose �xed probes to discriminate individual object poses from

a large set of possible poses. The problem tackled in this thesis is how to best

choose moving probes to re�ne the pose of a known object.

2.2 Work in Grasping

The need for good grasp planning algorithms for arbitrary shapes has always been

important for robotics and industrial automation. The problem of optimal �nger

placement has been addressed by Mishra et al. [18] who de�ne easily computable

quality metrics for grasps. Markensco� and Papadimitriou [15] chose to optimize

the grasp with respect to minimizing the forces needed to balance the object's

weight through friction. Ponce and Faverjon [21] �x the number of �ngers and

solve a system of linear constrains in the positions of the �ngers to optimally po-
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sition them along the polygonal edges. A similar technique for three-dimensional

polyhedral objects was developed by Ponce et al. [10]. Goldberg [12] also details

a method for choosing grasps with a parallel jaw gripper when the initial pose of

the object is unknown. Other optimizing grasps techniques based on simple geo-

metric constructions have been developed by Brost [4] and later Mirtich, Canny,

and Ferrari [11, 17].

2.3 Work in Set Coverings

This thesis will prove that �nding the minimal set of probes is equivalent to solving

the convex set covering problem. This problem is discussed by Clarkson [6] who

describes a O(cn logO(1) n) time randomized algorithm for �nding covering sets of

cardinality within O(log c) of the optimal set covering c.

More recent results by Br�onniman and Goodrich [3] on the dual problem of

�nding minimal hitting sets improves on these bounds. They demonstrate an

O(n log2 n) algorithm that �nds a hitting set of size O(1) from the optimal set

size. They employ work by Matou�sek [16] using �-nets.

3 RISC Robotics

RISC robotics [5] (Reduced Intricacy in Sensing and Control) is an attempt to

fuse automation and robotics technologies. The RISC acronym, borrowed from

computer architecture, suggests the parallels between the two technologies. RISC

robotics performs complex manufacturing operations by composing simple ele-

ments. A synonymous phrase to describe this theme is simply minimalist robotics.
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RISC robotics can be applied to many areas of manufacturing. For example,

RISC grasping uses simple two and three �ngered grippers with traditional �xtur-

ing devices such as clamps and vices [24]. RISC sensing employs simple but precise

sensor elements that can be combined to form complete systems for localizing and

recognizing arbitrary objects from a library [25, 23].

RISC robotics systems inherently consist of few degrees of freedom and low-

dimensional sensor spaces. This results in algorithms for manipulation and sensing

that are simple, highly accurate, and very fast.

4 De�ning Optimality

When probing an object the objective is to choose point probes that allow the

minimum variation of the object pose. Point probes inherently contain some

known error so it is not enough to take k independent measurements to constrain

k degrees of freedom. The placement of the probes e�ects the worst case object

displacement. Therefore, it is the relationship between the object displacements

and the corresponding probe displacements that are of interest. The goal is to

�nd a set of probe placements that minimizes the potential worst case object

displacement.

4.1 Object Pose De�nition

We de�ne O as the actual pose of the object in two-dimensions as

O = (Ox; Oy; O�)
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Recall from the problem statement that our aim is not in locating an object,

but in re�ning the position of a known object whose pose is known to some

reasonable degree of accuracy. Our approach relies on this initial coarse accuracy

pose information. We de�ne the assumed initial pose as Oi and quantify a bound

on the worse case displacement of the assumed pose from the actual pose as

kOi �Okm � �

where k � km is de�ned to be the m-norm. At this point, we run into the usual

problem of de�ning a metric on a space with distance and angular coordinates.

There may be application-speci�c ways to weight the angular component, but a

good default is to weight the angular component by the object's radius (i.e. the

largest distance from any point in the object to its coordinate origin). With this

choice, the metric bounds the maximum distance between any two corresponding

points on the object at O and Oi. A typical value for � would be tens of mils.

Finally, while we are considering anm-norm for generality, the 2-norm would seem

to be the most natural choice.

Recall that we will be using line probes to re�ne the position of the object.

Therefore, for a given set of probe measurements there will also be a set of valid

poses for the object consistent with those sensor readings. We denote this object

pose as �O and de�ne it to be an object pose chosen by an adversary consistent with

some sensor readings given the object is at O. We de�ne the di�erence between

the actual object position and the adversary's choice as o.

o = O � �O
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Recall that we are attempting to re�ne the position of the object so that � will

always be at least an order of magnitude larger than kok. In terms of linear

displacement the initial pose uncertainty, �, is typically on the order of tens of

mils while the uncertainty under probing is on the order of a mil or less.

� � kok

To quickly summarize we have O as the actual pose of the object, Oi as our

initial pose estimate, and �O as a pose that an adversary can choose that does not

violate our sensor readings. That is, we cannot determine from the sensors if the

object is at �O or not. We will clarify later exactly how �O is de�ned.

4.2 Probe Placement

We construct probes along the perimeter of the object and denote them as

p = (px; py; lx; ly)

where (px; py) is the point where the line probe touches the object when the object

is at Oi, and (lx; ly) is the direction of the line probe. We must guarantee that

no matter where the object actually is, this line probe always contacts the same

edge. Assuming that the object radius was used to weight the angular component

of the pose metric, this can be accomplished in a simple way: construct a strip

about the line probe l whose boundaries are parallel to the line, and at distance

� from it; This strip represents the possible relative positions of the line probe for

various actual object poses O. If the edge we are probing crosses the entire strip,

it will always be probed correctly. If the edge crosses only part of the strip, then
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Figure 4: Relationship of placement of probes (solid points) with error balls (dashed circles)

along an edge (solid line) and the resulting displacement region (shaded). (a) Probes at endpoints

of edge. (b) Probes moved inward from edge resulting in larger region of allowable motion. (c)

Probes coincident at center of edge, allowing maximum displacement region.

there is a possible O such that this line probe misses the edge completely. From

now on, we assume that all line probes are chosen so that their � strips touch only

the edge of interest.

The initial probe placement consists of placing a pair of probes on each edge.

Each probe is placed as near as possible to an endpoint of the edge, but subject

to the strip constraint above. Our algorithm will choose a subset of these initial

probes as the near optimal probe set. Our choice is based on the fact that we re-

ceive the most accurate pose information by probing near the vertices of an object.

Observe that probes near the vertices give rise to large sensor displacements as

a result of small rotational perturbations, while position information is the same

anywhere on the edge. Figure 4 demonstrates how moving a set of probes with
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a given error out towards the vertices of an edge shrinks the size of of allowable

displacements for that edge.

This set of probes is guaranteed to contain the optimal probe placement. Any

edge-interior probes would give only redundant information in the worst case,

and our probe choice is based on a worst-case analysis. A typical initial probe

placement example is shown in Figure 2. The remaining problem is to determine a

subset of these probes that still provide a substantial gain in object pose accuracy.

4.3 Probing Function

We place a coordinate system at the center of mass of the object. In addition

we de�ne the rotational displacement of the object to be about this center of

mass (C.O.M) axis. In Figure 5 we depict the construction of the corresponding

probe displacement for a given object displacement. This will de�ne the probing

function. In this �gure n is a unit normal to the edge being probed, p is the initial

probe location and p0 is its location after the displacement O from the origin.

Recall that � is very small allowing us to take small angle approximations and

write

p0k � pk + (Ox; Oy) + p?kO�

where p? = (x; y)? = (�y; x) and k denotes the kth probe. It follows that the

change in probe position is

�pk = p0k � pk

= (Ox; Oy) + p?kO�

13
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Figure 5: Original probe p and resulting probe p0 after an object displacement (Ox; Oy ; O�)

.

The probe actually only gives us useful position information normal to the edge

being probed. We could freely displace the object along the edge without changing

that probe reading. Therefore, the change in probe position along the edge normal

nk can be written as nk � �pk. Observe that even if we approach an edge at an

angle, when we detect the edge we can only claim that some point of the edge

must intersect the detected point. This is equivalent to the information we receive

if we approach normal to the edge. Therefore, the two probe approach techniques

are equivalent and thus the choice of edge approach is independent and left as a

�nal implementation detail. It does a�ect the �-strip described earlier, and the

amount of clearance from the edge endpoint needed to ensure the correct edge is

detected.

We are now ready to de�ne the probing function P : R3 ! R
k to be a real

valued function which maps object positions into ideal probe outputs of the form
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(P1; P2; : : : ; Pk). We de�ne each element to be

Pk(O) = �pk � nk (1)

Our probes will have a sensor error �, typically a mil or so. We de�ne the

measured probes as �P 2 R
k . Given a sensor error of �, we observe that the

measured probe values �P must be consistent with the ideal probes given object

pose O.

k �P � P (O)k1 � � (2)

Similarly, any possible object position �O that the adversary chooses must have all

measured probes within � of the given measurements.

kP ( �O)� �Pk1 � � (3)

Using the triangle inequality on these last two expressions, we �nd that the O and

�O satisfy

kP (O)� P ( �O)k1 � 2� (4)

and observe that for any �O satisfying this inequality that there a is �P satisfying

Equations 2 and 3. Thus the combined bound is tight. We will call the set of

object displacements �O that satisfy this inequality K.

Recall that the actual position of the object is de�ned as O and the possible

interpreted object position for some sensor reading is �O where �O is any �O satisfying

Equation 4. We want to constrain the distance between the interpreted object

position and the actual object position to be as small as possible. This in turn

minimizes the worst case distance between the actual and measured poses, which
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is the ultimate goal of pose re�nement. We represent the former quantity as

kO � �Okm (5)

We employ an adversarial argument and note that if an adversary is allowed to

move the object to some valid �O consistent with the sensor readings it will always

choose the �O such that Equation 5 is maximized. We express this as

sup
�O2K

kO � �Okm (6)

However, we are allowed to choose the set of probes P . Furthermore, we desire

a set of probes that will output drastically di�erent values for di�erent nearby

object poses, thus allowing us to identify di�erent poses easily. Essentially we

would like to eliminate the possibilities of obtaining identical or near-identical

sensor readings for an object in two di�erent poses. We can write this as

max
P
kP (O)� P ( �O)k1 (7)

or since P (O) is linear in O we can make the substitution to

max
P
kP (O� �O)k1 (8)

or rewriting

min
P

1

kP (O � �O)k1
(9)

Since both equations 6 and 9 scale linearly with O � �O, it is natural to combine

them as a ratio which is then independent of the magnitude of O � �O:

min
P

�
max
�O2K

kO � �Okm
kP (O � �O)k1

�
(10)
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From this we can arrive at our �nal optimality criterion and probe quality mea-

surement Q.

Q(P ) = min
P

�
max
�O2K

kO � �Okm
kP (O� �O)k1

�
(11)

5 Displacement Space

Working in displacement space, we observe that there is a simple geometric con-

struction of the optimality criterion as given in Equation 11. Displacement space,

denoted D and D 2 R
3 , is the space of all displacements in (x; y; �) of the object

O to be probed. Each probe sensor that we introduce imposes constraints on the

allowable set of displacements of the object without violating the probe value.

Equation 4 from the previous section de�nes a pair of halfspaces in displace-

ment space D for each probe pk.

kPk(O)� Pk( �O)k1 � 2�

kPk(O � �O)k1 � 2�

kPk(o)k1 � 2�

knxox + nyoy + (p? � n)o�k1 � 2�

These two halfspace can be written as

nxox + oyoy + (r? � n)o� � 2� � 0 (12)

nxox + oyoy + (r? � n)o� + 2� � 0 (13)

The intersection of all 2k halfspaces constructed from k probes by de�nition
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represents a convex polytope in D . We name this polytope S with the de�nition

S = \h2H(P )h

where H(P ) is the family of 2k halfspaces de�ned by the set of k probes P .

In displacement space this polytope S will have furthest outlying point which

will occur in the non-degenerate case at a vertex of S. This furthest outlying

point represents the largest object displacement from the assumed pose that still

satis�es the given probe measurements. More formally we de�ne this point as

�(S) = sup
q2S

kqkm

The distance to �(S) is exactly the optimality criteria as de�ned in Equation 11.

That follows because points in S �x the denominator of Equation 11, and �(S)

is chosen to maximize its numerator. We assume that P is �xed, so there is only

optimization by the adversary over q. Recall that an adversary can choose the

actual sensor readings �P such that the object displacement �(S) is a valid inter-

pretation of �P . Hence, this is the largest displacement of the object undetectable

by the given probing strategy.

For illustrative purposes we work through a simple example without rotation.

In Figure 6 we show three probes on a triangle, an admittedly simple case, but

enough to demonstrate our method. Notice that each probe in real space gives

rise to a pair of parallel halfspaces in displacement space, D . If we remove probe

p2, the area of polygon S in displacement space increases which represents the

additional translational freedom that the object can undergo and still remain

consistent with the remaining two sensor readings. Therefore, the added sensor
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Figure 6: Simple example of probe space and displacement space without considering rotation.

Note the removal of one probe and the resulting change of the polygon S in the displacement

space.

p2 is a useful addition since it decreases the area of S and reduces the distance to

�(S).

We are interested in probing strategies P 0 that have approximately the same

quality metric P . Remember that every probe we remove from P removes a pair

of halfspace in D . This in turn changes the shape of S but not always the point

�(S) which de�nes the optimality criteria. Therefore, we would like to �nd other
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optimal probes with fewer probes. In particular, we would like to �nd

min
P 0�P

jP 0j : Q(P 0) � Q(P )

where j � j is simply the cardinality of the set P 0.

We de�ne S 0 to be the polytope de�ned by the intersection of the halfspaces

de�ned by the probes P 0. Observe that

S 0 � S

which implies that when we remove a probe, hence two halfspaces, we expect the

furthest outlier to remain where it is or increase in distance from the origin giving

j�(S 0)j � j�(S)j

Rather than removing half-planes in an ad hocmanner such thatQ(S 0) remains

essentially unchanged, we will dualize and solve for a minimal convex set covering

for the corresponding points in the dual. These minimal set of points will be

exactly dual to the minimal set of halfspaces in displacement space by de�nition of

the minimal convex set cover problem. These resulting halfspaces in D correspond

to minimal set of probes, as desired. We discuss this dualization in the next

section.

Observe that the production of any such probing strategy is independent of

the error, 2�. This is true because we are interested in optimizing the ratio shown

in Equation 11. One can also note that topology of the polytope S of the solution

space is independent of � which only serves as a scaling factor. That is, when

we double � we get the same polytope at twice the size (four times the volume).

Therefore, without loss of generality we set � to one for the duration of the thesis.
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6 Displacement Space Dual

A strong relationship to grasping is shown in this section. We show that �nding

the optimal k probe placements is equivalent to �nding the optimal push-pull

grasp for a set of k �ngers. We recall that a push-pull grasp is de�ned as a grasp

that employs �ngers capable of exerting a pushing or pulling force at the contact.

We de�ne D
D to be the dual of D . We de�ne the dual exactly in Table 1.

In this mapping we show how points in D map to planes in D
D and similarly for

planes in D to points in D D . We note that by de�nition the dual of D D is D , hence

the duality operation is symmetric.

D D
D

p : (px; py; p�) $ pD : pxx+ pyy + p�� = 1

f : ax + by + c� = 1 $ fD : (a; b; c)

S = polytope $ SD = ffD : f \ Int(S) = ;g

Table 1: Duality Mappings

Observe that a polytope S de�ned as the intersection of a set of halfspaces hk

becomes the polytope SD. We de�ne Bound(hk) to be the plane on the boundary

of the halfspace hk. The polytope S
D can also be expressed as the convex hull of

the union of dual points Bound(hk)
D.

SD = Conv([Bound(hk)
D)
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Let r 2 S. The distance of r from the origin in D is simply

jrj =
q
r2x + r2y + r2�

The dual plane rD in D
D by de�nition is represented as

rxx + ryy + r�� = 1

This distance of the closest point on this plane to the origin in D
D is given by

jrDj =
1q

r2x + r2y + r2�

Setting � =
q
r2x + r2y + r2� we get that the distance of this point r from the origin

in D is � and the minimal distance of the dual plane rD from the origin in D
D is

1
�
. Therefore,

jrj =
1

jrDj

Let fc be the closest plane to the origin of D D not intersecting Int(SD). The

distance to fc is the same as the distance to the closest point uc in the boundary

of SD (which is contained in fc). And its easy to see that �(S)D = fc where �(S)

was de�ned earlier as the furthest outlying point in S.

The closest point to the origin in the boundary of a polytope lies on the largest

inscribed sphere centered at the origin. Observe that �(S) lies on the smallest

circumscribing sphere of S in D . Therefore, �nding the smallest circumscribing

sphere � for a polytope is equivalent to �nding the largest inscribed sphere �D of

the dual polytope SD. This follows from the relationship

jr�j =
1

jr�D j
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Recall that the planes Bound(h) through the halfspaces in D dualize to the

points

Bound(hk)
D = (nx; ny; p

?

k )

These points are equivalent to the wrenches due to unit pull �nger forces acting

at p. Recall that in the probing problem we obtain a pair of halfspaces for each

probe. Hence, the optimal probing problem is equivalent to the optimal push-pull

grasping problem. We use the optimal grasping criteria as de�ned by Mishra et

al. [18] and others [11, 17] which is the set of �nger placements such that the

one-norm of the �nger forces can resist the largest externally applied wrench on

the object. We also de�ne the optimal probe placement as the minimal number

of probes and their placement necessary to reduce the uncertainty in the position

of an object to better than some acceptable level. Using these metric de�nitions,

we obtain the following result.

Theorem 1 Finding the optimal placement of k probes is equivalent to �nding

the optimal push-pull frictionless grasp for a set of k �ngers.

7 Hitting Sets and Set Covers

Recall that the quality of that probing strategy is given directly by the radius of

the maximally inscribed sphere in SD. We would like to remove some vertices of

SD such that the radius of the maximally inscribed sphere does not decrease by

much.

This problem can be posed as a convex set cover problem which states that

given L and U a set of points in R
d , �nd C � U with L � Conv(U). Here
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we have L as the sphere of desired radius. This problem has been studied by

several individuals. Recently, Clarkson [6] describes a randomized algorithm for

computing the three-dimensional convex point set cover from an initial set of n

points to within O(log c) of the optimal cover of c points. His algorithm has a

running time of O(cn logO(1) n).

Recent work by Br�onniman and Goodrich [3] improve on both the running

time and approximation to the optimal convex set covering. Their deterministic

algorithm solves the equivalent problem of �nding a minimal hitting set, where

a hitting set is a subset H � X such that H has a non-empty intersection with

every set R in a collection of subsets of X. Their algorithm employs work by

Matou�sek [16] on �-nets to obtain a hitting set in O(n log2 n) time that is within

O(1) of the optimal size hitting set. This set corresponds exactly to the optimal

probe placement which we de�ne as a set of c probes that reduce the uncertainty

in the position of an object to at least some necessary level for the operation to

be performed.

In our optimal construction we obtain pairs of halfspaces, hence pairs of points

in the dual. However, in the Br�onniman and Goodrich algorithm they are treated

as two completely unrelated elements. This will result in near-optimal set sizes

that are in the worst case twice as large as we could achieve by grouping the pairs.

Alternatively, we can group them to obtain the near-optimal hitting set at a slight

running time cost. This performance slowdown is a result of an increase in the

VC-dimension [22] as a result of our pairing.

VC-dimension, named for Vapnik and �Chervonenkis, is de�ned for a range
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space (X;R) with P � X as the cardinality of the largest set P that is shattered

by R. A set P is shattered by R if �R(P ) is the power-set of P .

To obtain an optimal probing strategy for an array of scanning sensors as

shown in Figure 3, we identify the co-linear points in the displacement space and

assign them labels such that the hitting set algorithm will include all or none of

a set of co-linear points in the probe optimization selection. This also results in

an increase in the VC-dimension which a�ects the running time but still �nds a

hitting set within O(1) of the optimal one.

Our algorithm successfully handles other variations similar to the co-linear

constraint for the scanning sensor without major modi�cation. This makes it well

adapted to situations where optimal probing strategies under special constrains

are needed and not intuitive to observe.

The Lemma below summarizes much of the results of this paper.

Lemma 1 A near optimal set of c point probes can be found for any polygonal

object in O(n log2 n) time. Furthermore, the size of the set c will be within O(1)

of the size of the optimal set of c point probes.

8 Conclusion

This thesis has demonstrated a fast method by which optimal probe placements

can be obtained for any known polygonal object. More importantly, the solu-

tions it generates are guaranteed to be within a constant of the actual optimal

number of probes necessary. These probing strategies re�ne the position of an ob-

ject whose pose is approximately known. Furthermore, it is this pose re�nement
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problem that is a real and frequently encountered challenge in industrial manu-

facturing. The constraint of requiring probes that leave a part's pose unchanged

after each probing operation is easily satis�ed by employing optical contactless

sensors commonly found in industry. This thesis also shows that the problem of

optimal probe placement is dual to the well studied push-pull grasping problem

of positioning frictionless �ngers on an object.
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