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Abstract
By attaching sensors to GPS-enabled cell phones, we can gather
the raw data necessary to begin understand how urban air
pollution impacts both individuals and communities. In this paper
we introduce a hardware and software platform for exploring
algorithms and data gathered from pollution sensors integrated into
cell phones, and discuss our main research agenda going forward.
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1 Towards a societal scale sensor network
While industry analysts predict that cell phones will become the
“next PC,” we believe that the cell phone has the power to become
something much more than a scaled down, connected IO and
processing device. In addition to these standard PC traits, a cell
phone is situated in an environment, mobile, and typically co-located
with a user. These traits make the cell-phone ideally suited to track
and understand the impact that the environment has on individuals,
communities, cities and on a global scale, as well as understanding
how humans effect their environment.

By attaching sensors to GPS-enabled cell phones, we can gather
the raw data necessary to begin understand how, for example, urban
air pollution impacts both individuals and communities. While
integrating a sensor into a phone and transmitting the data that it
gathers to a database is not very difficult, doing so at low cost, on a
societal scale, with millions of phones providing data from hundreds
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of networks spread throughout the world makes the problem much
more tricky.

On top of the systems challenges, understanding the raw data
gathered from a network of cell phone-attached sensors presents
significant challenges as well. Cell phone users are mobile, are
unlikely to ever explicitly calibrate their sensors, typically put their
phone in their pocket or handbag (thus obstructing the sensor from
airflow), spend significant time indoors or in cars, and typically
charge their phone at most once per day, often much less frequently.
Even if users did calibrate their sensors, the very low-cost sensors we
intend to use drift over time and environmental conditions anyway.
Without knowing the location of a sensing event, automatically
calibrating the sensors in the phone, detecting the environment of
the phone, and intelligently managing power (by sampling at the
right times) the data gathered by the phones will be next to useless.

Integrating sensors into mobile phones, however, has several
practical advantages. For many applications, the most significant
challenges that face tradition wireless sensor networks are power
management and network formation and maintenance. Obviously
these problems are both already solved for mobile phones. Also, a
dearth of real-world, practical applications has limited the number of
“motes” (wireless sensor network nodes) which get manufactured,
and thus the price of a mote remains relatively high. With the
number of mobile phones sold in 2009 predicted to surpass 1 billion
[2], cell phones obviously have enormous economies of scale that
will be hard to replicate in the near term. Thus the mobile phone
platform has several significant advantages as a sensor that will
allow relatively simple, and massive deployments.

The mobility of the phone also provides some important opportu-
nities. At the expense of sampling a given location continuously, a
sensor will provide significant geographic coverage. Also, sensors
will be heavily biased towards locations in which people congregate,
so for human-centric applications, sensing in mobile phones will
often provide coverage exactly where it is needed most. In over-
sampled locations, the precision of the sensing system can be
increased by carefully averaging the readings from several nearby
sensors (see Section 4). Also, sensors close to one another can be
automatically calibrated, especially if there are some “ground truth”
reference sensors also situated in the environment (see Section 4).

1.1 Mobile sensing for developing countries

Integrating sensors into mobile-phones has the potential to signif-
icantly benefit people living in developing countries in particular.
Air pollution in general, and indoor air pollution in particular, has an
enormous health impact on people in developing countries. Outdoor
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air pollution is increasingly becoming a significant health risk as
well, with the rapid industrialization that is happening in India and
China, and beginning all over Africa [5].

There are several common sources of air pollution in developing
countries that are not significant factors in the air pollution in the
industrialized world. Besides over-polluting industry (due to dirty
generation and manufacturing technologies), open flame cooking
with solid fuel (often indoors), poorly tuned diesel engines (due to
poor regulation), and burning of trash and brush (due to lack of trash
service and for agriculture), all contribute to levels of air pollution
that are often many times higher in the less industrialized world.

A combination of public policy and education, however, can
have a significant impact on emission levels and human exposure to
pollution, however. . Since the cell phone is becoming ubiquitous
in the urban areas of developing countries, it is, in many respects, a
good means of education and generating awareness .

A preliminary mobile sensing pollution study we conducted in
Ghana provides a poignant anecdote for the impact that awareness
about our pollution can have on people’s behavior. During the course
of the study, one of the participants, a taxi driver, became concerned
about the alarms that the sensors he was carrying were generating.
In response, he had his own car serviced, at his own expense. It is
not clear from our survey whether he did this because he believed
that his own car was the source of the pollution, or out of more
altruistic motives, but regardless, we believe this story speaks to the
power of information to influence people’s behavior.

One fact that is immediately obvious when visiting many cities
in developing countries is that cities in developing countries are
generally much more polluted than the developed world. This is
due to a combination of less regulation, less enforcement of existing
regulations and the lack of viable, clean technologies [5].

Since policy makers are likely to carry mobile phones, we
believe that ubiquitous sensing on mobile phones is likely to impact
environmental policy. Furthermore, in some cases, people do not
change their behavior even when practical and safer alternatives are
available, often because of the lack of perceived health risk [4]. We
believe that raising people’s awareness of their exposure will impact
their willingness to adopt new technologies that benefit their health.

Ubiquitous pollution monitoring on mobile phones also has
interesting economics. Since mobile phones are manufactured in
such large quantities, any sensing in the phones will automatically
leverage these economies of scale. Thus, as MEMS sensing
technologies mature, the cost of of sensing on a phone becomes
marginal.

Also, even the marginal cost of integrating sensors into phones
will be borne by the wealthy people of a society, since mobile
phones are typically used by wealthy people. Thus, there is an
built-in subsidy which will benefit society as a whole. Of course,
there will be some bias in sampling towards the environments of
wealthy people, but we believe that there is enough overlap between
the environments of the wealthy and the poor, that the information
will be informative and useful regardless.

Finally, mobile sensing is particularly promising for developing
regions because high levels of pollution are easier to detect with
low cost sensors. As sensing technology matures, mobile sensing
will become more and more relevant to the developed world as well,
since cities in the developed world generally have less pollution. For
the time, being however, ubiquitous mobile sensing will be most
relevant and useful in the developing world.

1.2 Mobile phone network monitoring

Since the algorithms and software we are developing are relatively
neutral to the type of sensor being used, one interesting application

of the N-SMARTS platform is enabling mobile phone network
operators to monitor the coverage of their network. By recording the
received signal strength on the phone whenever a sensor reading is
taken, we can build a detailed coverage map for a network operator.
Since operators typically spend significant resources monitoring
the coverage and call quality of their network (Verizon wireless
spends millions of dollars annually in capital and engineering costs
monitoring their wireless network by driving around in specially
equipped cars ), and mostly only monitor main routes [?, ?]), this
could lead to significant cost savings for network operators.

We believe that network operators, especially budget constrained
operators in developing countries, might be willing to subsidize data
communication for sensor data transfer in exchange for network
coverage information.

1.3 The N-SMARTS and CommonSense Projects
The N-SMARTS (a UC Berkeley project) and the CommonSense
(an affiliated Intel Research project) focus on:

• Developing a platform to understand the real-world challenges
of sensing on a mobile phone, and to provide other researchers,
both within and outside of computer science, with a platform
for their own experiments. ( What do the sensor data look
like? What are people’s movement patterns? How do people’s
behaviors impact the data? How can the impact of those
behaviors be minimized by platform design? )

• Understanding how information about one’s environment can
impact one’s behavior (Will people incur personal expense
to sense their own environment? Will they invent their own
sensing applications given the right tools? What information
will induce them to change their behavior?)

• Building a system architecture that can scale to millions
of phones (What are the system bottlenecks? How can
communication costs be minimized? How much computation
should occur on the phone?)

• Designing algorithms to scalably provide accurate estimates
of pollution levels and other sensed data (How can accuracy
be increased by super-sampling? How can the phones be
automatically calibrated to one another, or other sensors in
the environment? How can those inferences be parallelized?)

• Designing algorithms to detect and account for the user’s
behaviors (Can we accurately detect when the phone is a
user’s pocket or purse, when the user is in a car, indoors,
outdoors, etc.? Can we correct our readings? Can we
accurately label data with the user’s context, so that we can
answer questions like “What is the median exposure to CO
for bicycle commuters on Shattuck Avenue?”)

• Assembling and building a suite of useful sensors to integrate.

2 N-SMARTS platforms
2.1 The COTS platform
In order to better understand what the pollution data and movement
patters of users will be, we need to gather data up front, before
we have an integrated sensor/phone platform available. For that
reason, we have put together a portable sensor platform that can
be carried around, allowing a person to gather data that is roughly
similar to the data that will be gathered by the integrated platform.
The Commercial, Off-The-Shelf (COTS) platform will allow us
to develop and test the algorithms that make up the core of the
N-SMART platform.
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Figure 1: The automotive and personal version of the data-
logging sensor platform

Figure 2: CO data collected from sensors in taxi cabs in Accra,
Ghana on March 21st, 2007, overlaid on aerial photography
using Google Earth.

The data acquisition platform consists of off-the-shelf pollution
sensors, and a GPS. Each unit contains

• A Lascar EL-USB-CO Carbon Monoxide data logger

• A Garmin Qwest GPS (with external antenna)

• A NO2, SO2 or O3 data-logger from BW Technologies

All of the devices log data, and their clocks are synchronized so
that the data from each device can be correlated. See our web page
for details on the sensors [8].

There are two version of this kit: a “automotive platform” that
can be mounted near a car window or externally, and a “personal
platform” that can be worn on a user’s belt (see Figure 1).

We deployed six automotive platforms on taxis and four personal
platforms on students in Accra, Ghana, West Africa, for two weeks
in March, 2007. These data were uploaded into a database and can
be viewed in a variety of formats, including an overlay on Google
Earth (see Figure 2). The database will be publicly available soon.

2.2 The integrated platform
We are also developing an integrated platform that will more closely
approximate a phone manufactured with sensors integrated directly
into the phone itself. This model will allow significant cost reduction
with respect to less complete integrations. Rather than actually
manufacturing a new phone and enclosure, however, we simply
replace the battery pack of the phone with a module that clips in to
the battery well of the phone, and contains both a battery and the
sensor module (see Figure 3).

Figure 3: The battery of a LG VX9800 with a PCB mounted on
top and covered by a new enclosure (outline shown for the new
enclosure only).

Figure 4: The large enclosure with fan and vent for automotive
and stationary deployments (drawing by Christopher Myers) .

The current version of the integrated platform has:

• CO and NOx sensors

• A temperature sensor for calibration

• An accelerometer for activity inferencing

• A Bluetooth radio for communication with the phone

• A flexible power system for use with a variety of power
sources

We chose to use Bluetooth to communicate with the phone to avoid
mechanical problems with a direct serial link, and to make the design
and software more generic.

We have also designed a dual board version that splits the sensors
onto a daughterboad. This allows us to mechanically separate the
control circuitry from the sensing apparatus. This is convenient in
deployments in which the platform is in a larger enclosure attached
to a vehicle, for example (see Figure 4).

2.3 Phone platform
We have designed the N-SMARTS board to work with any phone
that allows programmatic control of the bluetooth radio. If location
sensing is also required, as it is for our application, then the phone
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Figure 5: The test chamber we use to calibrate and test re-
sponse while carefully controlling poisonous gas concentration
and humidity.

should also have an integrated GPS. For our initial deployment,
we are using the relatively expensive but easy to use Nokia N95
smartphone.

The GPS integrated into GSM-based phones, however has a
fundamental limitation that Qualcomm MSM chipset-based phones
have overcome. Qualcomm’s chipset tightly integrates a GPS
radio that takes advantage of the tightly synchronized clock that is
necessary to make a CDMA radio work. In doing so, it effectively
eliminates a dimension in the parameter space that the radio searches
when trying to lock on to satellite signals. This allows the radio to
dwell on each parameter setting for about 1000 times longer than
in a normal GPS, averaging the signal over a significantly longer
amount of time, and significantly reducing noise. The effect is a
gain over a normal GPS radio, which Qualcomm quantifies as about
16dB. .

Practically speaking, this means that MSM-chipset based phones,
when combined with other Assisted-GPS technologies, are capable
of getting very fast cold-start fixes as well as indoor fixes. Our
experience has found this difference to be very significant, and
for passive-sensing (human out of the loop) applications, this
capability is doubly important. For this reason, we also are building
BREW-based phone software to interact with the N-SMARTS sensor
platform.

2.4 Testing

For testing and calibration of our equipment we have designed and
built a simple test chamber that allows us to control accurately
the chemical concentration, flow rate and humidity in a test
chamber. This allows us to calibrate our sensors, as well as perform
experiments on the response time, linearity and noise properties of
the various sensors we are using.

The test mechanism consists of a pure, dry air source, a dry toxic
gas source, a humidifier, a constant rate flow controller, two voltage
controlled flow controllers, a test chamber, a DA converter to drive
the flow controllers, and an AD converter to take readings from the
flow controllers and any analog sensors — such as temperature, or
some gas sensors that we have tested (see Figure 5).

Figure 6: PM2.5 particles are deposited on a resonating FBAR
via thermal phoresis, changing the resonance frequency of the
FBAR.

Figure 7: An inertial impaction filter is used for orientation
independent, robust particle filtration.

This test mechanism has proved invaluable in systematically
testing a range of sensor devices under various conditions. It allows
us to test for linearity, drift, response time, hysteresis, humidity
response and many other factors that would be otherwise very
difficult to characterize.

The we will describe calibration and testing of our various devices
in follow-up papers.

2.5 MEMS PM2.5 sensing

Airborne solid (Aerosol) particulate matter smaller than 2.5 microns
represents a serious health risk which has traditionally required large
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devices to detect. We have developed a MEMS based device which
measures particulate matter in the air by depositing aerosol particles
on a thin-film bulk acoustic resonator (FBAR) oscillating at 1.6GHz.
A thermal gradient is induced which causes airborne particles to
deposit on the FBAR via thermal phoresis. This deposition changes
the resonance frequency of the FBAR, which can be measured. See
Figure 6.

We have also designed a small inertial impaction filter [7] capable
of long term filtration without replacement, and capable of selecting
particles smaller than 2.5 microns. See Figure 7.

3 Challenges for mobile and mobile-phone
based sensing

In this section, we discuss important challenges for a mobile sensing
system. In Section 4, we discuss how our research relates to these
challenges.

Although mobility provides significant advantages, especially for
human-centric applications, it also presents some important and
significant challenges. User behavior and movement are somewhat
unpredictable, so it makes observing a specific point in space-
time difficult without an intentional visit to that location. This
is especially true for locations which are infrequently traveled
by people. This means that mobile sensing is most applicable
in situations in which the quantities of interest are often most
significant in places where people congregate. This is often the
case for pollution sensing, especially when the data are being used
for epidemiology.

Also, people put their phones in their pockets and purses, thus
obstructing the flow of air to the phone. Similarly, people’s behavior
and context can introduce local environmental bias. For example,
a person’s car or home might have a drastically different pollution
profile than the immediate surroundings. These local biases
introduced by users behavior make it difficult to make observations
relevant to people beyond the user of the phone. Activity inferencing
and exploiting the multiple sensors in the phone will be an important
aspect of mobile sensing.

Finally, if privacy is a critical concern in any application in which
people and sensors are involved, especially when GPS or other
location sensors are used. Also, authenticity and security will
be an important challenge. If the data are being used to make
policy decisions, then there will be significant incentive to distort
them. Mechanisms for ensuring the integrity of the data will be an
important part of any high-impact sensing system.

4 Research Directions
From the above challenges, we have identified several areas in which
we are doing research.

• Social aspects of mobile sensing and “Citizen Science”: We
are investigating how people will change their behavior based
on information they obtain from personal pollution sensors,
and what kinds of applications they might invent if they are
given the right tools [6].

• Advanced Sensing: We are developing a MEMS PM2.5 sensor
that is small enough to be integrated into a cell phone. This
includes a micro-pump and impaction filter that will also
serve to provide airflow for the other sensors. The sensor
will also provide particle discrimination using UV and IR
interferometry [1].

• Super sampling: We are investigating how to increase the
precision of the system by taking advantage of densely
sampled areas. Early theoretical and empirical results confirm
that the precision of the system can be dramatically improved
with properly calibrated sensors.

• Automatic Calibration: Early results with Gaussian Process
based models suggest that sensors that are in close proximity
to one another can be calibrated to one another, and to accurate
references situated in the environment [3]. We are developing
algorithms to do this in a robust and computationally tractable
way on a large scale.

• Context inference: Inferring the context of the phone, such as
whether and by which types of materials a sensor is obstructed,
whether it is indoors or outdoors, in a car, on a bike, walking,
etc., will provide important information not only for accurate
sensing, but also for labeling data in a way that will add value
to the end users of the data. We are exploring how to apply
previous research in activity inferencing, especially research
focusing on accelerometers, as well as investigating some new
techniques based on channel estimation and characterization
using the speaker and microphone.

• Plume detection: Detecting hazards and indicating locations
of safety will provide an important emergency response
function. We will adapt existing distributed plume detection
algorithms to mobile sensing scenarios.

We are not currently investigating security nor privacy, but
encourage others to do so. Although the scale of a system with
millions of devices challenges the scalability of many cryptographic
algorithms, collusion will be difficult on such a large scale, making
the security problem potentially easier in some respects. We believe
there are a variety of interesting problems in the security and privacy
problems of mobile sensing.
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